poj 2406 Power Strings (KMp)

这篇博客介绍了解决poj 2406问题的思路,通过应用KMP算法来计算字符串的特征向量next。如果字符串长度len能被(len - next[len])整除,那么最大的循环次数n等于len/(len - next[len]),否则n为1。
题意:给一个字符串S长度不超过10^6,求最大的n使得S由n个相同的字符串a连接而成,如:"ababab"则由n=3个"ab"连接而成,"aaaa"由n=4个"a"连接而成,"abcd"则由n=1个"abcd"连接而成。

定理:假设S的长度为len,则S存在循环子串,当且仅当,len可以被len - next[len]整除,最短循环子串为S[len - next[len]]

例子证明:

设S=q1q2q3q4q5q6q7q8,并设next[8] = 6,此时str = S[len - next[len]] = q1q2,由字符串特征向量next的定义可知,q1q2q3q4q5q= q3q4q5q6q7q8,即有q1q2=q3q4,q3q4=q5q6,q5q6=q7q8,即q1q2为循环子串,且易知为最短循环子串。由以上过程可知,若len可以被len - next[len]整除,则S存在循环子串,否则不存在。

解法:利用KMP算法,求字符串的特征向量next,若len可以被len - next[len]整除,则最大循环次数n为len/(len - next[len]),否则为1。


Power Strings

Time Limit : 6000/3000ms (Java/Other)   Memory Limit : 131072/65536K (Java/Other)
Total Submission(s) : 83   Accepted Submission(s) : 30
Problem Description
Given two strings a and b we define a*b to be their concatenation. For example, if a = "abc" and b = "def" then a*b = "abcdef". If we think of concatenation as multiplication, exponentiation by a non-negative integer is defined in the normal way: a^0 = "" (the empty string) and a^(n+1) = a*(a^n).
 

Input
Each test case is a line of input representing s, a string of printable characters. The length of s will be at least 1 and will not exceed 1 million characters. A line containing a period follows the last test case.
 

Output
For each s you should print the largest n such that s = a^n for some string a.
 

Sample Input
abcd aaaa ababab .
 

Sample Output
1 4 3
 


#include<stdio.h>
#include<string.h>
#define M 1000010
char str[M];
int n,m,len;
int cnt;
int p[M];
void getp()
{
	int i=0,j=-1;
	p[i]=j;
	while(i<len)
	{
		if(j==-1||str[i]==str[j])
		{
			i++;j++;
			p[i]=j;
		}
		else  j=p[j];	
	}
}
int main()
{
	while(scanf("%s",&str)!=EOF)
	{
		if(strcmp(str,".")==0)
		break;
		len=strlen(str);
		getp();
        if(len%(len-p[len])==0)   // len-p[len]为最小循环子串 
		printf("%d\n",len/(len-p[len]));
        else
		printf("1\n");	//不能整除,肯定会有余出来的数,一定不能构成整数倍的相同字符串		
	}
	return 0;
}


基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)内容概要:本文围绕“基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究”展开,提出了一种结合数据驱动方法与Koopman算子理论的递归神经网络(RNN)模型线性化方法,旨在提升纳米定位系统的预测控制精度与动态响应能力。研究通过构建数据驱动的线性化模型,克服了传统非线性系统建模复杂、计算开销大的问题,并在Matlab平台上实现了完整的算法仿真与验证,展示了该方法在高精度定位控制中的有效性与实用性。; 适合人群:具备一定自动化、控制理论或机器学习背景的科研人员与工程技术人员,尤其是从事精密定位、智能控制、非线性系统建模与预测控制相关领域的研究生与研究人员。; 使用场景及目标:①应用于纳米级精密定位系统(如原子力显微镜、半导体制造设备)中的高性能预测控制;②为复杂非线性系统的数据驱动建模与线性化提供新思路;③结合深度学习与经典控制理论,推动智能控制算法的实际落地。; 阅读建议:建议读者结合Matlab代码实现部分,深入理解Koopman算子与RNN结合的建模范式,重点关注数据预处理、模型训练与控制系统集成等关键环节,并可通过替换实际系统数据进行迁移验证,以掌握该方法的核心思想与工程应用技巧。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值