【机器学习基础】集成学习

本文介绍了集成学习在机器学习中的重要性,特别是通过实例讨论了Boosting(如AdaBoost)、Bagging(包括随机森林)的工作原理及其在减少偏差和方差方面的效果。作者还提到了结合策略,如平均法、投票法和学习法(如Stacking),以及它们如何提升预测性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

🚀个人主页为梦而生~ 关注我一起学习吧!
💡专栏机器学习 欢迎订阅!相对完整的机器学习基础教学!
特别提醒:针对机器学习,特别开始专栏:机器学习python实战 欢迎订阅!本专栏针对机器学习基础专栏的理论知识,利用python代码进行实际展示,真正做到从基础到实战!
💡往期推荐
【机器学习基础】一元线性回归(适合初学者的保姆级文章)
【机器学习基础】多元线性回归(适合初学者的保姆级文章)
【机器学习基础】对数几率回归(logistic回归)
【机器学习基础】正则化
【机器学习基础】决策树(Decision Tree)
【机器学习基础】K-Means聚类算法
【机器学习基础】DBSCAN
【机器学习基础】支持向量机
💡本期内容
集成学习(Ensemble Learning)是一种通过结合多个弱分类器的预测结果,来得到一个更强大的分类器的方法。它基于“群体智慧”,通过对多个模型结果的综合,可以缓解过度拟合和欠拟合等问题,并提升预测性能。常见的集成学习算法包括 Boosting、Bagging、随机森林等。其中,Boosting 是一种将多个弱分类器变成强分类器的算法,Bagging 是一种基于 Bootstrap 取样的集成学习算法,随机森林则是一种结合决策树和 Bagging 的方法。集成学习在机器学习和数据挖掘领域有着广泛的应用,例如在图像分类、自然语言处理、信用风险评估等任务中表现出了良好的性能。



1 个体与集成

集成学习(ensemble learning)通过构建并结合多个学习器来提升性能
在这里插入图片描述

1.1 集成个体

考虑一个简单的例子,在二分类问题中,假定3个分类器在三个样本中的表现如下图所示,其中√ 表示分类正确,X 号表示分类错误,集成的结果通过投票产生。

在这里插入图片描述
通过上表我们可以发现一个问题,如果每个学习器分类结果都是相同的,那么集成之后跟一个学习器其实差不多,就像是(b);

但是如果“八仙过海各显神通”,各个学习器在集成之后尽可能的显现了自己的能力,并且集成后的强分类器的性能还得到了提升,那么我们就认为集成的效果是好的,例如(a);

除此之外,如果各个学习器集成到一起并没有使得总的分类性能得

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

为梦而生~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值