🚀个人主页:为梦而生~ 关注我一起学习吧!
💡专栏:机器学习 欢迎订阅!相对完整的机器学习基础教学!
⭐特别提醒:针对机器学习,特别开始专栏:机器学习python实战 欢迎订阅!本专栏针对机器学习基础专栏的理论知识,利用python代码进行实际展示,真正做到从基础到实战!
💡往期推荐:
【机器学习基础】一元线性回归(适合初学者的保姆级文章)
【机器学习基础】多元线性回归(适合初学者的保姆级文章)
【机器学习基础】决策树(Decision Tree)
【机器学习基础】K-Means聚类算法
【机器学习基础】DBSCAN
【机器学习基础】支持向量机
【机器学习基础】集成学习
💡本期内容:BIRCH(Balanced Iterative Reducing and Clustering using Hierarchies)是一种用于大规模数据集的层次聚类算法。它采用一种多层次的聚类方法,首先利用一种称为“聚类特征树(CF Tree)”的数据结构来压缩数据集,然后通过逐步分裂每个节点以形成聚类。
文章目录
1 引言
1.1 聚类分析的重要性和应用场景
聚类分析是一种重要的数据分析技术,其重要性和应用场景主要体现在以下几个方面:
重要性:
- 发现隐藏模式与规律:聚类分析能够帮助我们从大量数据中发现隐含的模式和规律,从而提高数据的利用价值。
- 数据预处理:聚类分析经常作为数据挖掘的预处理步骤,将数据转化为更适合分类或回归的形式。
- 自动分组:它是一种无监督学习方法,能够自动对数据进行分组,将相似的数据归为同一组,不相似的数据归为不同的组。
应用场景:
- 商业智能分析:聚类分析可以将客户群体分成不同的类别,从而帮助企业开展更有针对性的营销活动。例如,市场分析人员可以通过聚类分析从客户数据库中识别出不同的客户群,并使用购买模式来描述这些客户群的特征。
- 电商购物推荐:聚类分析可以将相似的用户或商品聚类在一起,使得推荐系统能够提供更精准的推荐服务