通俗易懂的最长回文串图解、说明及Java代码(中心扩散法和Manacher算法)

本文介绍了回文串的概念,包括奇回文和偶回文。接着讨论了如何找到字符串中的最长回文串,分别阐述了暴力匹配法、中心扩散法的时间复杂度和实现思路,并重点解析了Manacher算法,包括其预处理步骤、回文半径记录以及优化策略。通过Manacher算法,可以在O(n)时间复杂度内求解最长回文串。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 回文串

作为程序员,回文串这个词已经见怪不怪了,就是一个字符串正着读和反着读是一样的,形式如abcdcba、bbaabb。这里涉及到奇回文偶回文,奇回文指回文串的字符数是奇数,偶回文指回文串的字符数是偶数。前面举的abcdcba就是奇回文,bbaabb就是偶回文。判断一个字符串是否是回文串很简单,只要从字符串的两端开始往中间扫描,全部匹配成功则是回文串,只要有一次匹配失败,那么就不是回文串。代码如下

// 没有对字符串为null或者空串的返回值进行考虑
static boolean Palindrome(String s){
    for(int i = 0, j = s.length()-1; i < j; i++, j--){
        if(s.charAt(i) != s.charAt(j)){
            return false;
        }
    }
    return true;
}

 

2. 最长回文串

在我们了解回文串内容后,如果给你一个字符串,你能不能得到该字符串中的最长回文串呢?

2.1 暴力匹配法

最长回文串简单的解法就是暴力匹配法,依次判断所有字符数大于1个的子串是否回文串,并记录最长的那个回文串。如acbc字符串,得到字符数大于1的子串ac、cb、bc;acb、cbc;acbc,其中cbc是最长回文串。虽然暴力匹配法思路清晰、代码简单,但是如果字符串长度较长时,那么子串的数量是很庞大的,对于一个长度为n的字符串,它的子串有n(n-1)/2个,加上判断子串是否为回文串的时间复杂度是O(n),所以最终总的时间复杂度是O(n^3)左右。暴力匹配留给大家自行编写代码,博主就偷个懒不写了。

2.2 中心扩散法

中心扩散法是另一种回文串解决方法,算法思路是从字符串的第一个字符一直遍历到最后一个字符,每次从该字符往两边扫描,如果左右两边的值相等,那么往左右两边拓展,直至左右两边的值不相等或者越界,扫描结束,记录此时的左右边界下标,并且记录此时的回文串长度。该方法的时间消耗主要是遍历字符串的每个字符,以及每个字符需要向两边拓展扩散,所以总的时间复杂度为O(n^2)

图解:以下以abcfcbd字符串遍历到 f 字符进行图解,如下图。

1. 当遍历abcfcbd字符串的 f 字符时,先令left和right都指向 f 字符。

2. 往左右拓展,可以拓展,left往左移,right往右移

3. 可以拓展,继续移动

4. 不可以继续拓展,结束,记录left和right的位置

 

代码

 public String longestPalindrome(String s) {
     int len = s.length();
     if(len <= 1){
         return s;
     }        
     
     int max = 0;
     int[] index = new int[2];
     for(int i = 0; i < len-1; i++){

         // 考虑奇数回文还是偶数回文,所以分别计算以i为中心,以i和i+1为中心两种方式的回文串
         int[] f1 = findSub(s, i, i);
         int[] f2 = findSub(s, i, i+1);
         int f1Len = f1[1] - f1[0];
         int f2Len = f2[1] - f2[0];

         // 如果以i为中心的奇回文串长度更长并且大于前面记录的最大回文串长度max,更新max
         // 如果以i和i+1为中心的偶回文串长度更长并且大于前面记录的最大回文串长度max,更新max
         if((f1Len > f2Len) && (f1Len > max)){
             index[0] = f1[0];
             index[1] = f1[1];
             max = f1Len;
         }else if((f1Len <= f2Len) && (f2Len > max)){
             index[0] = f2[0];
             index[1] = f2[1];
             max = f2Len;
         }
     }
     return s.substring(index[0], index[1]+1);
 }

 static int[] findSub(String s, int left, int right){
     // 如果是偶数回文,left和right不等,需要判断一下left和right的值是否相等
     if(s.charAt(left) != s.charAt(right)){
         return new int[]{left+1, left+1};
     }
     while((left >= 0) && (right <= s.length()-1) && (s.charAt(left) == s.charAt(right))){
         left--;
         right++;
     }
     return new int[]{left+1, right-1};
 }

 

2.3 Manacher算法 

Manacher算法是一种以O(n)时间复杂度得到最长回文串的算法,以该算法的发明者Manacher老先生名字命名。虽然该算法的解释网上较多,但是有点繁琐和难懂,博主尽量以自己小白的理解力详细地进行说明。我们接下来先说说Manacher算法的主要思想,它到底在哪里进行了优化?然后我们再上代码。接下来我们以dcbcdcbca字符串为例,请耐心阅读

2.3.1. 对字符串dcbcdcbca先预处理。

在每个字符两旁插入分割符,可以是任意字符,因为博主一开始也觉得分隔符不能是字符串中出现的字符,那这里选取'a'字符作为分割符进行证明,预处理后得到如下字符串str2

2.3.2. 记录每个字符的回文半径

遍历每个字符时,将每个字符可以向左右两边拓展的长度称为回文半径,使用val数组记录回文半径。则str2的第1个字符到第13个字符回文半径数据值如下图所示。

2.3.3 Manacher算法的优化之处

其实计算str2的第1个字符到第13个字符回文半径时Manacher也有优化,只是接下来更好讲解,所以现在分析。

当扫描到str2的第10个字符d时,此时的回文字符串是acabacadacabaca,如下图所示。

接下来我们要计算str2的第14个字符 b,正常情况下,我们以b为中心向两边拓展;Manacher算法的强大就是在此处进行了优化。

因为b处在axis和right之间,我们可以看看str2第14个b字符关于axis对称的第6个b字符它的回文半径是多少,为什么可以这样呢?

接下来看图解吧,原本以为自己理解了很好描述,但现在发现自己理解而已,要想描述清楚还是有点难,大家看看图解吧!

1. 步骤1

 

2. 步骤2

 

3. 步骤3

 

总结:Manacher算法进行优化的部分主要有两点:①字符串预处理,添加分割符;②利用回文串的对称信息,避免重复计算回文半径。

看来这种算法还是有些难描述的,大家见谅,还是只能多花点时间去消化,Manacher算法最重要一点就是利用对称信息。时间复杂度为啥是O(n),代码不仅仅有一个for循环,而且有while向左右扫描拓展呀?虽然有while,但只有在无法利用对称信息时才会进入while循环,所以避免了重复扫描已扫描过的区域。

 

代码

public String longestPalindrome(String s) {
        int len = s.length();
        int newLen = 2 * len + 1;
        // 字符串预处理,得到填充分隔符后的字符数组
        char[] newStr = new char[newLen];
        for(int i = 0; i < len; i++){
            newStr[2*i] = 'a';
            newStr[2*i+1] = s.charAt(i);
        }
        newStr[newLen-1] = 'a';

        // ans是最长回文串的回文半径,ansIndex是最长回文串的对称中心
        int[] val = new int[newLen];
        int axis = 0;
        int right = 0;
        int ans = 0;
        int ansIndex = 0;
        for(int i = 0; i < newLen; i++){
            // 如果当前遍历字符处于回文串的最远边界内,那么可以利用对称信息
            if(i < right){
                val[i] = Math.min(val[2*axis-i], right-i+1);
            }else{
                val[i] = 1;
            }
            // 没有越界,并且回文串向左右拓展成功,那么回文半径加1
            while(i-val[i] >= 0 && i+val[i] < newLen && newStr[i-val[i]] == newStr[i+val[i]]){
                val[i]++;
            }
            // 如果当前遍历字符的边界大于记录的最远边界,更新回文串的最远边界
            if(i+val[i]-1 > right){
                right = i+val[i]-1;
                axis = i;
            }
            // 记录最长回文串的回文半径和对称中心
            if(val[i] > ans){
                ans = val[i];
                ansIndex = i;
            }
        }
        
        StringBuilder sb = new StringBuilder();
        for(int i = ansIndex-ans+1; i < ansIndex+ans-1; i++){
            sb.append(newStr[++i]);
        }
        return sb.toString();
    }

 

以下是力扣的运行结果

快速排序是一种常用的排序算法,它的基本思想是通过一趟排序将待排序记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,然后分别对这两部分记录继续进行排序,重复以上步骤,直到整个序列有序。 简单来说,就是将一个无序的序列分成两部分,一部分比另一部分小,然后对这两个部分分别进行快速排序,最终得到一个有序序列。 下面是java的快速排序代码实现: ``` public class QuickSort { public static void quickSort(int[] arr, int left, int right) { if (left < right) { int pivotIndex = partition(arr, left, right); quickSort(arr, left, pivotIndex - 1); quickSort(arr, pivotIndex + 1, right); } } private static int partition(int[] arr, int left, int right) { int pivot = arr[left]; int i = left + 1; int j = right; while (true) { while (i <= j && arr[i] < pivot) { i++; } while (i <= j && arr[j] > pivot) { j--; } if (i >= j) { break; } swap(arr, i, j); } swap(arr, left, j); return j; } private static void swap(int[] arr, int i, int j) { int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } public static void main(String[] args) { int[] arr = {5, 3, 7, 2, 8, 4, 1, 6}; quickSort(arr, 0, arr.length - 1); System.out.println(Arrays.toString(arr)); } } ``` 以上代码实现了快速排序的算法,其中partition方法用来找到基准点(pivot)的位置,swap方法用来交换数组中两个元素的位置。在main方法中,我们给出一个待排序的数组,然后调用quickSort方法进行排序,最后输出排序后的结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值