非线性函数的协方差传播

  设有观测值Xn1\mathop{X}\limits_{n1}n1X的非线性函数
Z=f(X)(1)Z=f(X) \tag{1}Z=f(X)(1)

或写成Z=f(X1,X2,⋯ ,Xn)Z=f\left(X_{1}, X_{2}, \cdots, X_{n}\right)Z=f(X1,X2,,Xn)

已知XXX的协方差矩阵DxxD_{xx}Dxx,欲求Z的协方差DzzD_{zz}Dzz
  假定观测值XXX有近似值X0n1\mathop{X^0}\limits_{n1}n1X0
X0=[X10X20⋯Xn0]T\begin{aligned} &X^{0}=\left[\begin{array}{llll} X_{1}^{0} & X_{2}^{0} & \cdots & X_{n}^{0} \end{array}\right]^{T}\\ \end{aligned}X0=[X10X20Xn0]T

可将函数式按泰勒级数在点X10,X20,⋯Xn0X_{1}^{0},X_{2}^{0}, \cdots X_{n}^{0}X10,X20,Xn0处展开为
Z=f(X10X20⋯Xn0)+(∂f∂X1)0(X1−X10)+(∂f∂X2)(X2−X20)+⋯+(∂f∂Xn)(Xn−Xn0)+(二次以上项).(2)\begin{aligned} &Z=f\left(X_{1}^{0} \quad X_{2}^{0} \quad \cdots \quad X_{n}^{0}\right)+\left(\frac{\partial f}{\partial X_{1}}\right)_{0}\left(X_{1}-X_{1}^{0}\right)\\ &+\left(\frac{\partial f}{\partial X_{2}}\right)\left(X_{2}-X_{2}^{0}\right)+\cdots+\left(\frac{\partial f}{\partial X_{n}}\right)\left(X_{n}-X_{n}^{0}\right)+(二次以上项). \end{aligned}\tag{2}Z=f(X10X20Xn0)+(X1f)0(X1X10)+(X2f)(X2X20)++(Xnf)(XnXn0)+().(2)

式中,(∂f∂Xi)0(\frac{\partial f}{\partial X_{i}})_0(Xif)0是函数对各个变量所取的偏导数,并以近似值X0X^0X0带入所算得的数值,它们都是常数。当X0X^0X0与X非常接近时,上式中二次以上各项很微小,故可以略去。因此,可将上式写为
Z=(∂f∂X1)0X1+(∂f∂X2)0X2+⋯+(∂f∂X2)0X0+f(X10,X20,⋯ ,Xn)−∑i=1n(∂f∂Xi)0Xi(3)Z=\left(\frac{\partial f}{\partial X_{1}}\right)_{0} X_{1}+\left(\frac{\partial f}{\partial X_{2}}\right)_{0} X_{2}+\cdots+\left(\frac{\partial f}{\partial X_{2}}\right) _{0} X_{0}+f\left(X_{1}^{0}, X_{2}^{0}, \cdots, X_{n}\right)-\sum_{i=1}^{n}\left(\frac{\partial f}{\partial X_{i}}\right) _{0} X_i\tag{3}Z=(X1f)0X1+(X2

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值