设有观测值Xn1\mathop{X}\limits_{n1}n1X的非线性函数
Z=f(X)(1)Z=f(X) \tag{1}Z=f(X)(1)
或写成Z=f(X1,X2,⋯ ,Xn)Z=f\left(X_{1}, X_{2}, \cdots, X_{n}\right)Z=f(X1,X2,⋯,Xn)
已知XXX的协方差矩阵DxxD_{xx}Dxx,欲求Z的协方差DzzD_{zz}Dzz
假定观测值XXX有近似值X0n1\mathop{X^0}\limits_{n1}n1X0
X0=[X10X20⋯Xn0]T\begin{aligned} &X^{0}=\left[\begin{array}{llll} X_{1}^{0} & X_{2}^{0} & \cdots & X_{n}^{0} \end{array}\right]^{T}\\ \end{aligned}X0=[X10X20⋯Xn0]T
可将函数式按泰勒级数在点X10,X20,⋯Xn0X_{1}^{0},X_{2}^{0}, \cdots X_{n}^{0}X10,X20,⋯Xn0处展开为
Z=f(X10X20⋯Xn0)+(∂f∂X1)0(X1−X10)+(∂f∂X2)(X2−X20)+⋯+(∂f∂Xn)(Xn−Xn0)+(二次以上项).(2)\begin{aligned} &Z=f\left(X_{1}^{0} \quad X_{2}^{0} \quad \cdots \quad X_{n}^{0}\right)+\left(\frac{\partial f}{\partial X_{1}}\right)_{0}\left(X_{1}-X_{1}^{0}\right)\\ &+\left(\frac{\partial f}{\partial X_{2}}\right)\left(X_{2}-X_{2}^{0}\right)+\cdots+\left(\frac{\partial f}{\partial X_{n}}\right)\left(X_{n}-X_{n}^{0}\right)+(二次以上项). \end{aligned}\tag{2}Z=f(X10X20⋯Xn0)+(∂X1∂f)0(X1−X10)+(∂X2∂f)(X2−X20)+⋯+(∂Xn∂f)(Xn−Xn0)+(二次以上项).(2)
式中,(∂f∂Xi)0(\frac{\partial f}{\partial X_{i}})_0(∂Xi∂f)0是函数对各个变量所取的偏导数,并以近似值X0X^0X0带入所算得的数值,它们都是常数。当X0X^0X0与X非常接近时,上式中二次以上各项很微小,故可以略去。因此,可将上式写为
Z=(∂f∂X1)0X1+(∂f∂X2)0X2+⋯+(∂f∂X2)0X0+f(X10,X20,⋯ ,Xn)−∑i=1n(∂f∂Xi)0Xi(3)Z=\left(\frac{\partial f}{\partial X_{1}}\right)_{0} X_{1}+\left(\frac{\partial f}{\partial X_{2}}\right)_{0} X_{2}+\cdots+\left(\frac{\partial f}{\partial X_{2}}\right) _{0} X_{0}+f\left(X_{1}^{0}, X_{2}^{0}, \cdots, X_{n}\right)-\sum_{i=1}^{n}\left(\frac{\partial f}{\partial X_{i}}\right) _{0} X_i\tag{3}Z=(∂X1∂f)0X1+(∂X2

最低0.47元/天 解锁文章
3552

被折叠的 条评论
为什么被折叠?



