[BZOJ1426]收集邮票(期望 DP)

这篇博客介绍了如何利用期望动态规划(DP)解决BZOJ1426收集邮票的问题。定义了状态f[i]表示收集i张邮票的期望费用,以及g[i]表示收集i张邮票的期望购买次数。通过递推公式推导出f[i]和g[i]的关系,最终得出总期望费用f[0],并提供了O(n)的时间复杂度解法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Address

洛谷 P4550
BZOJ 1426

Solution

  • 先定义状态
  • f [ i ] f[i] f[i] 表示当前已经收集了 i i i 张邮票的情况下,将 n n n 张邮票全部收集的期望费用
  • f [ n ] = 0 f[n]=0 f[n]=0
  • 然后你会发现无法转移——我们不知道现在购买的邮票是第几张
  • 所以再次记录 g [ i ] g[i] g[i] 表示当前已经收集了 i i i 张邮票的情况下,将 n n n 张邮票全部收集的期望购买次数
  • 显然 g [ n ] = 0 g[n]=0 g[n]=0
  • 0 ≤ i &lt; n 0\le i&lt;n 0i<n 时,有
  • g [ i ] = 1 + i n g [ i ] + n − i n g [ i + 1 ] g[i]=1+\frac ing[i]+\frac{n-i}ng[i+1] g[i]=1+nig[i]+nnig[i+1]
  • 解方程得
  • g [ i ] = n n − i + g [ i + 1 ] g[i]=\frac n{n-i}+g[i+1] g[i]=nin+g[i+1]
  • f [ i ] f[i] f[i] 表示当前已经收集了 i i i 张邮票,并且下一次购买邮票的费用为 1 1 1 的情况下,将 n n n 张邮票全部收集的期望费用
  • 分析下转移:如果当前已经收集了 i i i 张邮票,并且现在又用 1 1 1 的费用购买了一张邮票
  • 那么之后所有邮票的费用都加一
  • 而期望情况下之后需要再收集 g [ i ] g[i] g[i] (或 g [ i + 1 ] g[i+1] g[i+1] )张邮票
  • 所以相当于之后多了 g [ i ] g[i] g[i] (或 g [ i + 1 ] g[i+1] g[i+1] )的额外费用
  • 于是
  • f [ i ] = 1 + i n ( f [ i ] + g [ i ] ) + n − i n ( f [ i + 1 ] + g [ i + 1 ] ) f[i]=1+\frac in(f[i]+g[i])+\frac{n-i}n(f[i+1]+g[i+1]) f[i]=1+ni(f[i]+g[i])+nni(f[i+1]+g[i+1])
  • 解方程得
  • f [ i ] = n n − i + i n − i g [ i ] + g [ i + 1 ] + f [ i + 1 ] f[i]=\frac n{n-i}+\frac i{n-i}g[i]+g[i+1]+f[i+1] f[i]=nin+niig[i]+g[i+1]+f[i+1]
  • 最后答案 f [ 0 ] f[0] f[0]
  • 复杂度 O ( n ) O(n) O(n)

Code

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define Rof(i, a, b) for (i = a; i >= b; i--)

const int N = 1e4 + 5;

int n;
double f[N], g[N];

int main()
{
	int i;
	std::cin >> n;
	Rof (i, n - 1, 0)
	{
		g[i] = g[i + 1] + 1.0 * n / (n - i);
		f[i] = 1.0 * n / (n - i) + 1.0 * i / (n - i) * g[i]
			+ f[i + 1] + g[i + 1];
	}
	printf("%.2lf\n", f[0]);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值