codeforces 585E

luogu链接

解法

考虑枚举gcd==g,计算每个gcd的贡献:记c[g]表示数列中为g的倍数的数有多少个,然后考虑一个g的贡献就是 ( n − c [ g ] ) ∗ ( 2 c [ g ] − 1 ) (n-c[g])*(2^{c[g]}-1) (nc[g])(2c[g]1),前一个计算的是x,后一个计算的是{S}。
但是这样是有计算多余的,也有算重的:举个例子:当 g = 6 g=6 g=6的时候,a数列中有2,6,那么会把 S = { 6 } , x = 2 S = \left\{6\right\} ,x=2 S={6}x=2计算进答案,考虑什么容斥系数可以去掉实际gcd不等于1的贡献呢?看起来和莫比乌斯函数有关:考虑一个合法的 S , 将 它 的 g c d 设 为 q S,将它的gcd设为q S,gcdq,它会在所有 g ∣ q g|q gq时被算上,由于合法的 S S S的要求是 [ q ! = 1 ] [q!=1] [q!=1],所以可以得知每个g的容斥系数是-mu[g]

#include<bits/stdc++.h>
using namespace std;
const int mod=1e9+7;
const int maxn=5e5+5;
const int maxm=1e7+5;
inline int read(){
	char c=getchar();int t=0,f=1;
	while((!isdigit(c))&&(c!=EOF)){if(c=='-')f=-1;c=getchar();}
	while((isdigit(c))&&(c!=EOF)){t=(t<<3)+(t<<1)+(c^48);c=getchar();}
	return t*f;
}
int n,a[maxn],mx;
int mu[maxm],p[maxm],vis[maxm],cnt;
void get(){
	mu[1]=1;
	for(int i=2;i<=mx;i++){
		if(!vis[i]){p[++cnt]=i;mu[i]=-1;}
		for(int j=1;j<=cnt&&i*p[j]<=mx;j++){
			vis[i*p[j]]=1;mu[i*p[j]]=-mu[i];
			if(i%p[j]==0){
				mu[i*p[j]]=0;
				break;
			}
		}
	}
}
int c[maxm];
int pre[maxm];
signed main(){
	n=read();
	for(int i=1;i<=n;i++){
		a[i]=read();
		c[a[i]]++;
		mx=max(mx,a[i]);
	}
	pre[0]=1;
	for(int i=1;i<=mx;i++)pre[i]=2ll*pre[i-1]%mod;
	get();
	int ans=0;
	for(int i=1;i<=mx;i++){int tmp=0;
		for(int j=i;j<=mx;j+=i)tmp+=c[j];
		ans=((ans+1ll*(-mu[i])*(n-tmp)%mod*(pre[tmp]-1)%mod)%mod+mod)%mod;
	}
	printf("%d\n",(ans+mod)%mod);
	return 0;
}

### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值