用pytorch实现mnist GAN网络

本文介绍了一个使用PyTorch实现的生成对抗网络(GAN),该网络能够在MNIST数据集上生成手写数字。网络包括一个生成器和一个判别器,分别用于生成数字图像和判断图像的真实性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

环境:ubuntu 16.04;Nvidia GTX1080Ti;pytorch 0.4.1

网络结构:

 

代码如下:

# -*-coding: utf-8 -*-
import torch
from torchvision import datasets, transforms
import torch.utils.data as data
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from torch.autograd import Variable
import matplotlib.pyplot as plt

BATCH_SIZE = 64  # 一批数据大小
IMAGE_SIZE = 28  # 图片尺寸
N_GNET = 50  # 噪声分布大小
NUM_EPOCH = 200  # 数据集迭代批次
USE_CUDA = False

# 辨别器
class disciminator(nn.Module):
	def __init__(self):
		super(disciminator, self).__init__()
		self.conv_1 = nn.Conv2d(1, 32, kernel_size=5, stride=2, padding=2)
		self.conv_2 = nn.Conv2d(32, 64, kernel_size=5, stride=2, padding=2)
		self.lrelu = nn.LeakyReLU(0.2)
		self.fc1 = nn.Linear(7 * 7 * 64, 512)
		self.fc2 = nn.Linear(512, 1)

	def forward(self, x):
		x = self.lrelu(self.conv_1(x))
		x = self.lrelu(self.conv_2(x))
		x = x.view(-1, 7 * 7 * 64)
		x = self.lrelu(self.fc1(x))
		return F.sigmoid(self.fc2(x))

# 生成器
class generator(nn.Module):
	def __init__(self):
		super(generator, self).__init__()
		self.fc1 = nn.Linear(N_GNET, 14 * 14)
		self.fc2 = nn.Linear(14 * 14, 28 * 28)

	def forward(self, x):
		x = F.relu(self.fc1(x))
		x = F.sigmoid(self.fc2(x))
		return x.view(-1, 1, 28, 28)


# 把batch_size个生成图片 拼接成size[0] x size[1]大小的整张图片,便于保存和可视化结果
def merge(images, size):
	h, w = images.shape[1], images.shape[2]
	img = np.zeros((h * size[0], w * size[1], 3))
	for idx, image in enumerate(images):
		i = idx % size[1]
		j = idx // size[1]
		img[j * h:j * h + h, i * w:i * w + w, :] = image
	return img

def main():
	# 加载数据
	mnist_data = data.DataLoader(
		datasets.MNIST('./mnist_data', train=True, download=True, transform=transforms.Compose(
			[transforms.ToTensor()])), batch_size=BATCH_SIZE, num_workers=1,drop_last=True)
	device = torch.device("cuda" if USE_CUDA else "cpu")
	net_d = disciminator()
	net_g = generator()
	net_d.to(device)
	net_g.to(device)
	optimizer_d = torch.optim.Adam(net_d.parameters(), lr=0.0001)
	optimizer_g = torch.optim.Adam(net_g.parameters(), lr=0.0002)
	criterion=nn.BCELoss().to(device)
	true_lable=Variable(torch.ones(BATCH_SIZE)).to(device)
	fake_lable=Variable(torch.zeros(BATCH_SIZE)).to(device)
	for current_epoch in range(NUM_EPOCH):
		print(mnist_data)

		for ii, (img, _) in enumerate(mnist_data):
			# 训练辨别器
			optimizer_d.zero_grad()
			# if img.shape[0].item()<64:
			# 	break;
			real_image = img.to(device)
			noises = np.random.randn(BATCH_SIZE, N_GNET)
			# 辨别器辨别真图的loss
			d_real = net_d(real_image)
			loss_d_real=criterion(d_real,true_lable)
			loss_d_real.backward()
			# 辨别器辨别真图的loss
			fake_in = torch.Tensor(noises).to(device)
			fake_image = net_g(fake_in).detach()
			d_fake = net_d(fake_image)
			loss_d_fake=criterion(d_fake,fake_lable)
			loss_d_fake.backward()
			optimizer_d.step()

			# 训练生成器
			optimizer_g.zero_grad()
			#noises = np.random.randn(BATCH_SIZE, N_GNET)
			fake_in = torch.Tensor(noises).to(device)
			fake_image = net_g(fake_in)
			d_fake = net_d(fake_image)
			# 生成器生成假图的loss
			g_loss = criterion(d_fake,true_lable)
			g_loss.backward()
			optimizer_g.step()
			# 每200步画出生成的数字图片和相关的数据
			if ii % 200 == 0:
				plt.clf()
				print("Epoch:%d step:%d d_loss:%.2f, g_loss:%.2f" % (current_epoch, ii, loss_d_fake+loss_d_real, g_loss))
				plt.imshow(merge(fake_image.to('cpu').detach().numpy().transpose((0,2,3,1)), [8, 8]))
				#plt.imshow(merge(real_image.detach().to('cpu').numpy().transpose((0, 2, 3, 1)), [8, 8]))
				plt.text(-10.0, -5.0, 'Epoch:%.2d step:%.4d D accuracy=%.2f (0.5 for D to converge)' %
			         (current_epoch, ii, (d_real.mean() + 1 - d_fake.mean()) / 2), fontdict={'size': 10})
				plt.draw()
				plt.pause(0.1)
	plt.ioff()
	plt.show()


if __name__ == '__main__':
	main()

生成的数字效果图如下:

ps:代码可能存在问题(隐隐的觉得) ,但还是生成了数字!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值