基于GAN用pytorch实现sin信号的生成

本文通过使用PyTorch框架实现生成对抗网络(GAN),详细介绍了如何在Ubuntu16.04环境下搭建并训练GAN模型,以生成类似于正弦波的信号。代码中包含了判别器和生成器的构建,以及损失函数、优化器的选择和训练过程的展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

环境:ubuntu 16.04; pytorch 0.4.1

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from torch.autograd import Variable
import matplotlib.pyplot as plt

SAMPLE_GAP = 0.2
SAMPLE_NUM = 50
N_GNET = 50
BATCH_SIZE = 64
USE_CUDA = True
MAX_EPOCH = 50000
POINT = np.linspace(0, SAMPLE_GAP * SAMPLE_NUM, SAMPLE_NUM)


# 判别器
class disciminator(nn.Module):
	def __init__(self):
		super(disciminator, self).__init__()
		self.fc1 = nn.Linear(SAMPLE_NUM, 128)
		self.fc2 = nn.Linear(128, 1)

	def forward(self, x):
		x = F.relu(self.fc1(x))
		x = self.fc2(x)
		return F.sigmoid(x)


# 生成器
class generator(nn.Module):
	def __init__(self):
		super(generator, self).__init__()
		self.fc1 = nn.Linear(N_GNET, 128)
		self.fc2 = nn.Linear(128, SAMPLE_NUM)

	def forward(self, x):
		x = F.relu(self.fc1(x))
		return self.fc2(x)


def main():
	plt.ion()  # 开启interactive mode,便于连续plot
	# 用于计算的设备 CPU or GPU
	device = torch.device("cuda" if USE_CUDA else "cpu")
	# 定义判别器与生成器的网络
	net_d = disciminator()
	net_g = generator()
	net_d.to(device)
	net_g.to(device)
	# 损失函数
	criterion = nn.BCELoss().to(device)
	# 真假数据的标签
	true_lable = Variable(torch.ones(BATCH_SIZE)).to(device)
	fake_lable = Variable(torch.zeros(BATCH_SIZE)).to(device)
	# 优化器
	optimizer_d = torch.optim.Adam(net_d.parameters(), lr=0.0001)
	optimizer_g = torch.optim.Adam(net_g.parameters(), lr=0.0001)
	for i in range(MAX_EPOCH):
		# 为真实数据加上噪声
		real_data = np.vstack([np.sin(POINT) + np.random.normal(0, 0.01, SAMPLE_NUM) for _ in range(BATCH_SIZE)])
		real_data = Variable(torch.Tensor(real_data)).to(device)
		# 用随机噪声作为生成器的输入
		g_noises = np.random.randn(BATCH_SIZE, N_GNET)
		g_noises = Variable(torch.Tensor(g_noises)).to(device)
		# 训练辨别器
		optimizer_d.zero_grad()
		# 辨别器辨别真图的loss
		d_real = net_d(real_data)
		loss_d_real = criterion(d_real, true_lable)
		loss_d_real.backward()
		# 辨别器辨别假图的loss
		fake_date = net_g(g_noises)
		d_fake = net_d(fake_date)
		loss_d_fake = criterion(d_fake, fake_lable)
		loss_d_fake.backward()
		optimizer_d.step()
		#训练生成器

		optimizer_g.zero_grad()
		fake_date = net_g(g_noises)
		d_fake = net_d(fake_date)
		# 生成器生成假图的loss
		loss_g = criterion(d_fake, true_lable)
		loss_g.backward()
		optimizer_g.step()
		# 每200步画出生成的数字图片和相关的数据
		if i % 200 == 0:
			print(fake_date[0])
			plt.cla()
			plt.plot(POINT, fake_date[0].to('cpu').detach().numpy(), c='#4AD631', lw=2,
			         label="generated line")  # 生成网络生成的数据
			plt.plot(POINT, real_data[0].to('cpu').detach().numpy(), c='#74BCFF', lw=3, label="real sin")  # 真实数据
			prob = (loss_d_real.mean() + 1 - loss_d_fake.mean()) / 2.
			plt.text(-.5, 2.3, 'D accuracy=%.2f (0.5 for D to converge)' % (prob),
			         fontdict={'size': 15})
			plt.ylim(-2, 2)
			plt.draw(), plt.pause(0.2)
	plt.ioff()
	plt.show()


if __name__ == '__main__':
	main()

效果图:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值