环境:ubuntu 16.04; pytorch 0.4.1
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from torch.autograd import Variable
import matplotlib.pyplot as plt
SAMPLE_GAP = 0.2
SAMPLE_NUM = 50
N_GNET = 50
BATCH_SIZE = 64
USE_CUDA = True
MAX_EPOCH = 50000
POINT = np.linspace(0, SAMPLE_GAP * SAMPLE_NUM, SAMPLE_NUM)
# 判别器
class disciminator(nn.Module):
def __init__(self):
super(disciminator, self).__init__()
self.fc1 = nn.Linear(SAMPLE_NUM, 128)
self.fc2 = nn.Linear(128, 1)
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.sigmoid(x)
# 生成器
class generator(nn.Module):
def __init__(self):
super(generator, self).__init__()
self.fc1 = nn.Linear(N_GNET, 128)
self.fc2 = nn.Linear(128, SAMPLE_NUM)
def forward(self, x):
x = F.relu(self.fc1(x))
return self.fc2(x)
def main():
plt.ion() # 开启interactive mode,便于连续plot
# 用于计算的设备 CPU or GPU
device = torch.device("cuda" if USE_CUDA else "cpu")
# 定义判别器与生成器的网络
net_d = disciminator()
net_g = generator()
net_d.to(device)
net_g.to(device)
# 损失函数
criterion = nn.BCELoss().to(device)
# 真假数据的标签
true_lable = Variable(torch.ones(BATCH_SIZE)).to(device)
fake_lable = Variable(torch.zeros(BATCH_SIZE)).to(device)
# 优化器
optimizer_d = torch.optim.Adam(net_d.parameters(), lr=0.0001)
optimizer_g = torch.optim.Adam(net_g.parameters(), lr=0.0001)
for i in range(MAX_EPOCH):
# 为真实数据加上噪声
real_data = np.vstack([np.sin(POINT) + np.random.normal(0, 0.01, SAMPLE_NUM) for _ in range(BATCH_SIZE)])
real_data = Variable(torch.Tensor(real_data)).to(device)
# 用随机噪声作为生成器的输入
g_noises = np.random.randn(BATCH_SIZE, N_GNET)
g_noises = Variable(torch.Tensor(g_noises)).to(device)
# 训练辨别器
optimizer_d.zero_grad()
# 辨别器辨别真图的loss
d_real = net_d(real_data)
loss_d_real = criterion(d_real, true_lable)
loss_d_real.backward()
# 辨别器辨别假图的loss
fake_date = net_g(g_noises)
d_fake = net_d(fake_date)
loss_d_fake = criterion(d_fake, fake_lable)
loss_d_fake.backward()
optimizer_d.step()
#训练生成器
optimizer_g.zero_grad()
fake_date = net_g(g_noises)
d_fake = net_d(fake_date)
# 生成器生成假图的loss
loss_g = criterion(d_fake, true_lable)
loss_g.backward()
optimizer_g.step()
# 每200步画出生成的数字图片和相关的数据
if i % 200 == 0:
print(fake_date[0])
plt.cla()
plt.plot(POINT, fake_date[0].to('cpu').detach().numpy(), c='#4AD631', lw=2,
label="generated line") # 生成网络生成的数据
plt.plot(POINT, real_data[0].to('cpu').detach().numpy(), c='#74BCFF', lw=3, label="real sin") # 真实数据
prob = (loss_d_real.mean() + 1 - loss_d_fake.mean()) / 2.
plt.text(-.5, 2.3, 'D accuracy=%.2f (0.5 for D to converge)' % (prob),
fontdict={'size': 15})
plt.ylim(-2, 2)
plt.draw(), plt.pause(0.2)
plt.ioff()
plt.show()
if __name__ == '__main__':
main()
效果图:

