视频讲解:
MuJoCo 提高机械臂笛卡尔空间IK+路径规划+轨迹优化的成功率及效率
代码仓库:https://github.com/LitchiCheng/mujoco-learning
在《MuJoCo 机械臂关节路径规划+轨迹优化+末端轨迹可视化》这期里面我们讲到了在关节空间下的路径规划及轨迹优化,但笛卡尔空间下的目标点移动更为常见
今天分享的主要内容有两大块:
1.笛卡尔空间IK转关节空间,然后进行路径规划及轨迹优化的衔接部分
2.优化IK及路径规划的成功率及效率
IK部分依然使用pyroboplan进行求解
def getIk(self, init_state, rotation_matrix, pose):
while True:
self.init_state = init_state
target_tform = pinocchio.SE3(rotation_matrix, np.array(pose))
q_sol = self.ik.solve(
self.target_frame,
target_tform,
init_state=self.init_state,
nullspace_components=self.nullspace_components,
verbose=True,
)
if q_sol is not None:
print("IK solution found")
return q_sol
其中用于避免碰撞和关节限位的零空间分量参数需要调整至如下
self.nullspace_components = [
lambda model_roboplan, q: collision_avoidance_nullspace_component(
model_roboplan,
data,
self.collision_model,
collision_data,
q,
gain=1.0,
dist_padding=0.05,
),
lambda model_roboplan, q: joint_limit_nullspace_component(
model_roboplan, q, gain=1.0, padding=0.025
),
]
rrt的参数修改如下,仅使用rrt_star搜索方法
options = RRTPlannerOptions(
max_step_size=0.05,
max_connection_dist=0.5,
rrt_connect=False,
bidirectional_rrt=False,
rrt_star=True,
max_rewire_dist=0.5,
max_planning_time=5.0,
fast_return=True,
goal_biasing_probability=0.25,
collision_distance_padding=0.0001,
)
完整代码如下
import mujoco_viewer
import mujoco,time,threading
import numpy as np
import pinocchio
import matplotlib
# matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import itertools
from pyroboplan.core.utils import (
get_random_collision_free_state,
extract_cartesian_poses,
)
from pyroboplan.ik.differential_ik import DifferentialIk, DifferentialIkOptions
from pyroboplan.ik.nullspace_components import (
joint_limit_nullspace_component,
collision_avoidance_nullspace_component,
)
from pyroboplan.models.panda import (
load_models,
add_self_collisions,
add_object_collisions,
)
from pyroboplan.planning.rrt import RRTPlanner, RRTPlannerOptions
from pyroboplan.trajectory.trajectory_optimization import (
CubicTrajectoryOptimization,
CubicTrajectoryOptimizationOptions,
)
class Test(mujoco_viewer.CustomViewer):
def __init__(self, path):
super().__init__(path, 3, azimuth=180, elevation=-30)
self.path = path
def runBefore(self):
# Create models and data
self.model_roboplan, self.collision_model, visual_model = load_models(use_sphere_collisions=True)
add_self_collisions(self.model_roboplan, self.collision_model)
add_object_collisions(self.model_roboplan, self.collision_model, visual_model, inflation_radius=0.1)
data = self.model_roboplan.createData()
collision_data = self.collision_model.createData()
self.target_frame = "panda_hand"
ignore_joint_indices = [
self.model_roboplan.getJointId("panda_finger_joint1") - 1,
self.model_roboplan.getJointId("panda_finger_joint2") - 1,
]
np.set_printoptions(precision=3)
# Set up the IK solver
options = DifferentialIkOptions(
max_iters=200,
max_retries=10,
damping=0.0001,
min_step_size=0.05,
max_step_size=0.1,
ignore_joint_indices=ignore_joint_indices,
rng_seed=None,
)
self.ik = DifferentialIk(
self.model_roboplan,
data=data,
collision_model=self.collision_model,
options=options,
visualizer=None,
)
self.nullspace_components = [
lambda model_roboplan, q: collision_avoidance_nullspace_component(
model_roboplan,
data,
self.collision_model,
collision_data,
q,
gain=1.0,
dist_padding=0.05,
),
lambda model_roboplan, q: joint_limit_nullspace_component(
model_roboplan, q, gain=1.0, padding=0.025
),
]
theta = np.pi
rotation_matrix = np.array([
[1, 0, 0],
[0, np.cos(theta), -np.sin(theta)],
[0, np.sin(theta), np.cos(theta)]
])
q_start = self.getIk(self.random_valid_state(), rotation_matrix, [0.5, 0.0, 0.3])
q_goal = self.getIk(self.random_valid_state(), rotation_matrix, [0.3, 0.0, 0.5])
while True:
# Search for a path
options = RRTPlannerOptions(
max_step_size=0.05,
max_connection_dist=0.5,
rrt_connect=False,
bidirectional_rrt=False,
rrt_star=True,
max_rewire_dist=0.5,
max_planning_time=5.0,
fast_return=True,
goal_biasing_probability=0.25,
collision_distance_padding=0.0001,
)
print("")
print(f"Planning a path...")
planner = RRTPlanner(self.model_roboplan, self.collision_model, options=options)
q_path = planner.plan(q_start, q_goal)
print(f"Path found with {len(q_path)} waypoints")
if q_path is not None and len(q_path) > 0:
print(f"Got a path with {len(q_path)} waypoints")
if len(q_path) > 50:
print("Path is too long, skipping...")
continue
else:
print("Failed to plan.")
# Perform trajectory optimization.
dt = 0.025
options = CubicTrajectoryOptimizationOptions(
num_waypoints=len(q_path),
samples_per_segment=1,
min_segment_time=0.5,
max_segment_time=10.0,
min_vel=-1.5,
max_vel=1.5,
min_accel=-0.75,
max_accel=0.75,
min_jerk=-1.0,
max_jerk=1.0,
max_planning_time=1.0,
check_collisions=False,
min_collision_dist=0.001,
collision_influence_dist=0.05,
collision_avoidance_cost_weight=0.0,
collision_link_list=[
"obstacle_box_1",
"obstacle_box_2",
"obstacle_sphere_1",
"obstacle_sphere_2",
"ground_plane",
"panda_hand",
],
)
print("Optimizing the path...")
optimizer = CubicTrajectoryOptimization(self.model_roboplan, self.collision_model, options)
traj = optimizer.plan([q_path[0], q_path[-1]], init_path=q_path)
if traj is None:
print("Retrying with all the RRT waypoints...")
traj = optimizer.plan(q_path, init_path=q_path)
if traj is not None:
print("Trajectory optimization successful")
traj_gen = traj.generate(dt)
self.q_vec = traj_gen[1]
print(f"path has {self.q_vec.shape[1]} points")
self.tforms = extract_cartesian_poses(self.model_roboplan, "panda_hand", self.q_vec.T)
self.plot(self.tforms)
break
self.index = 0
def plot(self, tfs):
positions = []
for tform in tfs:
position = tform.translation
positions.append(position)
positions = np.array(positions)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot(positions[:, 0], positions[:, 1], positions[:, 2], marker='o')
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
plt.show(block=False)
plt.pause(0.001)
def getIk(self, init_state, rotation_matrix, pose):
while True:
self.init_state = init_state
target_tform = pinocchio.SE3(rotation_matrix, np.array(pose))
q_sol = self.ik.solve(
self.target_frame,
target_tform,
init_state=self.init_state,
nullspace_components=self.nullspace_components,
verbose=True,
)
if q_sol is not None:
print("IK solution found")
return q_sol
def random_valid_state(self):
return get_random_collision_free_state(
self.model_roboplan, self.collision_model, distance_padding=0.001
)
def runFunc(self):
self.data.qpos[:7] = self.q_vec[:7, self.index]
self.index += 1
if self.index >= self.q_vec.shape[1]:
self.index = 0
time.sleep(0.01)
if __name__ == "__main__":
test = Test("/home/dar/MuJoCoBin/mujoco_menagerie/franka_emika_panda/scene.xml")
test.run_loop()