卷积与循环神经网络:从理论到实践
1. 卷积神经网络训练
在TensorFlow中训练卷积神经网络,首先要定义占位符,为网络架构做好准备。以下是示例代码及详细解释:
BATCH_SIZE = 64
EVAL_BATCH_SIZE = 64
train_data_node = tf.placeholder(
tf.float32,
shape=(BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS))
train_labels_node = tf.placeholder(tf.int64, shape=(BATCH_SIZE,))
eval_data = tf.placeholder(
tf.float32,
shape=(EVAL_BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS))
上述代码定义了训练数据、训练标签和评估数据的占位符。训练数据和评估数据的占位符形状包含了批量大小、图像尺寸和通道数等信息。
接下来是训练LeNet - 5架构的代码:
# Create a local session to run the training.
start_time = time.time()
with tf.Session() as sess:
# Run all the initializers to prepare the trainable parameters.
tf
超级会员免费看
订阅专栏 解锁全文
2792

被折叠的 条评论
为什么被折叠?



