图像检索与目标检测技术全解析
1. FLANN匹配与单应性变换
单应性变换(Homography)是计算机视觉中一个重要的概念。简单来说,当一个图形是另一个图形的透视变形时,它们之间就存在单应性。下面通过代码示例来详细说明如何利用FLANN(Fast Library for Approximate Nearest Neighbors)匹配结合单应性变换进行图像匹配。
import numpy as np
import cv2
from matplotlib import pyplot as plt
MIN_MATCH_COUNT = 10
img1 = cv2.imread('images/bb.jpg', 0)
img2 = cv2.imread('images/color2_small.jpg', 0)
sift = cv2.xfeatures2d.SIFT_create()
kp1, des1 = sift.detectAndCompute(img1, None)
kp2, des2 = sift.detectAndCompute(img2, None)
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des1, des2, k=2)
# store all the good mat
超级会员免费看
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



