leetcode Minimum Window Substring

本文探讨了如何在复杂度为O(n)的情况下,找出给定字符串中包含另一个字符串所有字符的最小窗口。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given a string S and a string T, find the minimum window in S which will contain all the characters in T in complexity O(n).

For example,
S = "ADOBECODEBANC"
T = "ABC"

Minimum window is "BANC".

Note:
If there is no such window in S that covers all characters in T, return the emtpy string "".

If there are multiple such windows, you are guaranteed that there will always be only one unique minimum window in S.


Double pointers, greedy algorithms are obvious, however, I wrote a disgusting code like this:

class Solution {
 public:
  string minWindow(string S, string T) {
    map<char, int> Tmap;
    if (T.length() == 0)
      return "";
    int i, r = 0, l = 0, minSize = S.length() + 1, minl = 0, minr = 0, find = 0;
    for (i = 0; i < T.length(); ++i) 
      if (Tmap.find(T[i]) == Tmap.end())
        Tmap.insert(make_pair(T[i],1));
      else
        ++Tmap[T[i]];
    for (r = 0; r < S.length(); ++r) {
      if (Tmap.find(S[r]) != Tmap.end())
        --Tmap[S[r]];
      if (r - l + 1 < T.length())
        continue;
      map<char, int>::iterator it = Tmap.begin();
      for (; it != Tmap.end() && it->second <= 0; ++it);
      if (it == Tmap.end()) {
        find = 1;
        break;
      }
    }
    if (find) {
      minl = l;
      minr = r;
      minSize = r - l + 1;      
    }
    while (find && r < S.length()) {
      for (; r - l + 1 >= T.length(); ++l) 
        if (Tmap.find(S[l]) != Tmap.end()) {
          ++Tmap[S[l]];
          if (Tmap[S[l]] > 0)
            break;
        }
      if (r - l + 1 == T.length()) {
        minl = l;
        minr = r;
        minSize = r - l + 1;
        break;
      }
      else 
        ++Tmap[S[l++]];
      if (r - l + 2 < minSize) {
        minl = l - 1;
        minr = r;
        minSize = r - l + 2;
      }
      
      for (; r < S.length() && S[l - 1] != S[r]; ++r) 
        if (Tmap.find(S[r]) != Tmap.end())
          --Tmap[S[r]];
      --Tmap[S[r]];
    }
    if (minSize > S.length())
      return "";
    else
      return S.substr(minl, minSize);
  }
};

Too many bugs hinder me from passing this problem. Some comments about this code :

1. Breaking a loop may have many reasons, so doing sth. based on the loop index after a loop is unconscionable unless the condition of loop is simple. 

2. One variable is simpler than judging an array. 

3. Two arrays are better.

4. Since the size of char is 8 bits, an array of 260 is enough instead of a map. 

The following is a optimized code:

class Solution {
 public:
  string minWindow(string S, string T) {
    int Tmap[260] = {0}, Smap[260] = {0};
    if (T.length() == 0 || S.length() < T.length())
      return "";
    int i, j, l, r, count = 0, target = T.length(), minSize = S.length() + 1, minl = 0;
    for (i = 0; i < T.size(); ++i)
      ++Tmap[T[i]];
    for (r = 0, l = 0; r < S.size(); ++r) {
      ++Smap[S[r]];
      if (Smap[S[r]] <= Tmap[S[r]])
        ++count;
      
      if (count == target) {
        for (; r - l + 1 >= target && count == target; ++l) {
          --Smap[S[l]];
          if (Smap[S[l]] < Tmap[S[l]])
            --count;
        }
        if (r - (l - 1) + 1 < minSize) {
          minSize = r - l +2;
          minl = l - 1;
        }
      }
    }
    if (minSize > S.length())
      return "";
    else
      return S.substr(minl, minSize);
  }
};





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值