There is a box protected by a password. The password is a sequence of n
digits where each digit can be one of the first k
digits 0, 1, ..., k-1
.
While entering a password, the last n
digits entered will automatically be matched against the correct password.
For example, assuming the correct password is "345"
, if you type "012345"
, the box will open because the correct password matches the suffix of the entered password.
Return any password of minimum length that is guaranteed to open the box at some point of entering it.
Example 1:
Input: n = 1, k = 2
Output: "01"
Note: "10" will be accepted too.
Example 2:
Input: n = 2, k = 2
Output: "00110"
Note: "01100", "10011", "11001" will be accepted too.
Note:
n
will be in the range[1, 4]
.k
will be in the range[1, 10]
.k^n
will be at most4096
.
----------------------------------------------------------------------------------------------------
关键点在于理解这是一个欧拉图,把n-1位数看做是k^(n-1)个状态,状态之间的跳转恰好是边,边对应一个密码。题目是要求一个序列能覆盖所有的边,恰好是欧拉图的一笔画问题,解法就是DFS的后序遍历,这思路和 https://blog.youkuaiyun.com/taoqick/article/details/104147688 (虽然不是欧拉图)很像
class Solution:
def dfs(self, cur, seen, res, k):
for strk in [str(i) for i in range(k)]:
edge = cur + strk
if (edge not in seen):
seen.add(edge)
self.dfs(edge[1:], seen, res, k)
res.append(strk) #bug1: 先self.dfs(edge[1:], seen, res, k),后res.append(strk)
def crackSafe(self, n: int, k: int):
res = []
init = "0" * (n - 1)
self.dfs(init, set(), res, k)
return ''.join(res) + init
s = Solution()
print(s.crackSafe(n = 2, k = 2))
再补一个非递归的栈顶元素取儿子法,注意这里难点就是区分什么是边,什么是点,以及初始值:
class Solution:
def find_not_visited_edge(self, node, edge_seen, k):
for i in range(k):
edge = node + str(i)
if (edge not in edge_seen):
edge_seen.add(edge)
return edge
return None
def crackSafe(self, n: int, k: int):
edge_seen, sta, res = {"0" * n}, ["0" * n], []
while (sta):
edge = self.find_not_visited_edge(sta[-1][1:], edge_seen, k)
while (edge != None):
sta.append(edge)
edge = self.find_not_visited_edge(sta[-1][1:], edge_seen, k)
if (sta):
res.append(sta.pop()[-1])
return ''.join(res) + "0" * (n-1)