Leetcode 332. Reconstruct Itinerary

本文介绍了一种基于深度优先遍历的算法,用于解决给定一系列机票后如何重构完整行程的问题。算法确保行程从JFK机场开始,并在多个有效行程中返回字典序最小的一个。通过递归和非递归实现,展示了如何利用数据结构如字典和栈来优化算法效率。

Given a list of airline tickets represented by pairs of departure and arrival airports [from, to], reconstruct the itinerary in order. All of the tickets belong to a man who departs from JFK. Thus, the itinerary must begin with JFK.

Note:

  1. If there are multiple valid itineraries, you should return the itinerary that has the smallest lexical order when read as a single string. For example, the itinerary ["JFK", "LGA"] has a smaller lexical order than ["JFK", "LGB"].
  2. All airports are represented by three capital letters (IATA code).
  3. You may assume all tickets form at least one valid itinerary.

Example 1:

Input: [["MUC", "LHR"], ["JFK", "MUC"], ["SFO", "SJC"], ["LHR", "SFO"]]
Output: ["JFK", "MUC", "LHR", "SFO", "SJC"]

Example 2:

Input: [["JFK","SFO"],["JFK","ATL"],["SFO","ATL"],["ATL","JFK"],["ATL","SFO"]]
Output: ["JFK","ATL","JFK","SFO","ATL","SFO"]
Explanation: Another possible reconstruction is ["JFK","SFO","ATL","JFK","ATL","SFO"].
             But it is larger in lexical order.

---------------------------------------------------------------------------------------

这题的特殊之处在于,深度优先遍历,参考下图,优先深下去,然后字典序优先的靠前。可以从先序的角度去思考,先序到KUL卡住了,看看另外一棵子树是不是能遍历完,这就是后序的思路了。

从discussion学的别人代码:

class Solution:
    def findItineraryNoneRecursive(self, tickets):
        d = {}
        tickets.sort(key=lambda x: x[1], reverse=True)

        for ticket in tickets:
            fro, to = ticket[0], ticket[1]
            if (fro not in d):
                d[fro] = [to]
            elif (fro in d):
                d[fro].append(to)

        revert,sta = [],["JFK"]
        while (sta):
            while(sta[-1] in d and d[sta[-1]]):
                top = d[sta[-1]].pop()
                sta.append(top)
            revert.append(sta.pop())
        return revert[::-1]

    def findItinerary(self, tickets):
        d = {}
        tickets.sort(key=lambda x: x[1], reverse=True)

        for ticket in tickets:
            fro, to = ticket[0], ticket[1]
            if (fro not in d):
                d[fro] = [to]
            elif (fro in d):
                d[fro].append(to)

        revert,sta = [],["JFK"]
        self.dfs("JFK", d, revert)
        return revert[::-1]
    def dfs(self, cur, d, revert):
        while (cur in d and d[cur]):
            self.dfs(d[cur].pop(), d, revert)
        revert.append(cur)

s = Solution()
print(s.findItinerary([["JFK","KUL"],["JFK","NRT"],["NRT","JFK"]])) #['JFK', 'NRT', 'JFK', 'KUL']
#print(s.findItinerary([["JFK","KUL"],["JFK","NRT"],["KUL","JFK"]])) #['JFK', 'KUL', 'JFK', 'NRT']
#print(s.findItinerary([["JFK","KUL"],["JFK","NRT"],["KUL","JFK"],["NRT","JFK"]])) #['JFK', 'KUL', 'JFK', 'NRT', 'JFK']


后序遍历的思路,这道题学到了一种新玩法post3:

from itertools import permutations


# Definition for a binary tree node.
class TreeNode:
    def __init__(self, x):
        self.val = x
        self.left = None
        self.right = None


class Solution:
    def p1(self, root):
        if (root == None):
            return
        print(root.val)
        self.p1(root.left)
        self.p1(root.right)

    def p2(self, root):
        stack = []
        while (root != None or stack):
            while (root != None):
                print(root.val)
                stack.append(root)
                root = root.left
            if (stack):
                root = stack.pop()
                root = None if root == None else root.right

    def i1(self, root):
        if (root == None):
            return
        self.i1(root.left)
        print(root.val)
        self.i1(root.right)

    def i2(self, root):
        stack = []
        while (root != None or stack):
            while (root != None):
                stack.append({'node': root, 'tag': 'l'})
                root = root.left
            if (stack):
                cur = stack.pop()
                if (cur["tag"] == 'l'):
                    print(cur["node"].val)
                    if (cur["node"].right != None):
                        stack.append({'node': cur["node"].right, 'tag': 'r'})
                    root = None
                elif (cur["tag"] == 'r'):
                    root = cur["node"]

    # i3 is better, inorder doesn't need extra flg in fact
    def i3(self, root):
        stack = []
        while (root != None or stack):
            while (root != None):
                stack.append(root)
                root = root.left
            if (stack):
                root = stack.pop()
                print(root.val)
                root = root.right if (root.right != None) else None

    def post1(self, root):
        if (root == None):
            return
        self.post1(root.left)
        self.post1(root.right)
        print(root.val)

    def post2(self, root):
        stack = []
        while (root != None or stack):
            while (root != None):
                stack.append({'node': root, 'tag': 'l'})
                root = root.left
            if (stack):
                cur = stack.pop()
                if (cur["tag"] == 'l'):
                    stack.append({'node': cur["node"], 'tag': 'r'})
                    root = None if cur["node"].right == None else cur["node"].right
                elif (cur["tag"] == 'r'):
                    print(cur["node"].val)
                    root = None

    def get_not_visited_child(self, parent, visited):
        if (parent.left and parent.left not in visited):
            return parent.left
        if (parent.right and parent.right not in visited):
            return parent.right
        return None

    #新玩法
    def post3(self,root):
        sta = [root]
        visited = {root}
        revert = []
        while (sta):
            next = self.get_not_visited_child(sta[-1], visited)
            while (next):
                sta.append(next)
                visited.add(next)
                next = self.get_not_visited_child(sta[-1], visited)
            if (sta):
                revert.append(sta.pop().val)
        return revert

n1 = TreeNode(1)
n2 = TreeNode(2)
n3 = TreeNode(3)
n4 = TreeNode(4)
n5 = TreeNode(5)
n6 = TreeNode(6)
n7 = TreeNode(7)
n1.left = n2
n1.right = n3
n2.left = n4
n2.right = n5
n3.left = n6
n3.right = n7
s = Solution()
s.post2(n1)
print(s.post3(n1))

更多可以参考https://blog.youkuaiyun.com/taoqick/article/details/82495508

### 如何在 VSCode 中安装和配置 LeetCode 插件以及 Node.js 运行环境 #### 安装 LeetCode 插件 在 VSCode 的扩展市场中搜索 `leetcode`,找到官方提供的插件并点击 **Install** 按钮进行安装[^1]。如果已经安装过该插件,则无需重复操作。 #### 下载与安装 Node.js 由于 LeetCode 插件依赖于 Node.js 环境,因此需要下载并安装 Node.js。访问官方网站 https://nodejs.org/en/ 并选择适合当前系统的版本(推荐使用 LTS 版本)。按照向导完成安装流程后,需确认 Node.js 是否成功安装到系统环境中[^2]。 可以通过命令行运行以下代码来验证: ```bash node -v npm -v ``` 上述命令应返回对应的 Node.js 和 npm 的版本号。如果没有正常返回版本信息,则可能未正确配置环境变量。 #### 解决环境路径问题 即使完成了 Node.js 的安装,仍可能出现类似 “LeetCode extension needs Node.js installed in environment path” 或者 “command ‘leetcode.toggleLeetCodeCn’ not found” 的错误提示[^3]。这通常是因为 VSCode 未能识别全局的 Node.js 路径或者本地安装的 nvm 默认版本未被正确加载[^4]。 解决方法如下: 1. 手动指定 Node.js 可执行文件的位置 在 VSCode 设置界面中输入关键词 `leetcode`,定位至选项 **Node Path**,将其值设为实际的 Node.js 安装目录下的 `node.exe` 文件位置。例如:`C:\Program Files\nodejs\node.exe`。 2. 使用 NVM 用户管理工具调整默认版本 如果通过 nvm 工具切换了不同的 Node.js 版本,请确保设置了默认使用的版本号。可通过以下指令实现: ```bash nvm alias default <version> ``` 重新启动 VSCode 后测试功能键是否恢复正常工作状态。 --- #### 配置常用刷题语言 最后一步是在 VSCode 设置面板中的 LeetCode 插件部分定义个人习惯采用的主要编程语言作为默认提交方式之一。这样可以减少频繁修改编码风格的时间成本。 --- ### 总结 综上所述,要在 VSCode 上顺利启用 LeetCode 插件及其关联服务,除了基本插件本身外还需额外准备支持性的后台框架——即 Node.js 应用程序引擎;同时针对特定场景下产生的兼容性障碍采取针对性措施加以修正即可达成目标[^3]。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值