题目
题目描述
给定一个单词数组 words 和一个长度 maxWidth ,重新排版单词,使其成为每行恰好有 maxWidth 个字符,且左右两端对齐的文本。
你应该使用 “贪心算法” 来放置给定的单词;也就是说,尽可能多地往每行中放置单词。必要时可用空格 ’ ’ 填充,使得每行恰好有 maxWidth 个字符。
要求尽可能均匀分配单词间的空格数量。如果某一行单词间的空格不能均匀分配,则左侧放置的空格数要多于右侧的空格数。
文本的最后一行应为左对齐,且单词之间不插入额外的空格。
注意:
单词是指由非空格字符组成的字符序列。
每个单词的长度大于 0,小于等于 maxWidth。
输入单词数组 words 至少包含一个单词。
示例 1:
输入: words = [“This”, “is”, “an”, “example”, “of”, “text”, “justification.”], maxWidth = 16
输出:
[
“This is an”,
“example of text”,
"justification. "
]
示例 2:
输入:words = [“What”,“must”,“be”,“acknowledgment”,“shall”,“be”], maxWidth = 16
输出:
[
“What must be”,
"acknowledgment ",
"shall be "
]
解释: 注意最后一行的格式应为 "shall be " 而不是 “shall be”,
因为最后一行应为左对齐,而不是左右两端对齐。
第二行同样为左对齐,这是因为这行只包含一个单词。
示例 3:
输入:words = [“Science”,“is”,“what”,“we”,“understand”,“well”,“enough”,“to”,“explain”,“to”,“a”,“computer.”,“Art”,“is”,“everything”,“else”,“we”,“do”],maxWidth = 20
输出:
[
“Science is what we”,
“understand well”,
“enough to explain to”,
“a computer. Art is”,
“everything else we”,
"do "
]
提示:
1 <= words.length <= 300
1 <= words[i].length <= 20
words[i] 由小写英文字母和符号组成
1 <= maxWidth <= 100
words[i].length <= maxWidth
题解
思路分析
为了实现上述功能,可以按照以下步骤进行:
- 逐行构建:遍历单词列表,尝试将尽可能多的单词放入当前行中,直到不能再放为止。
- 空格分配:对于非最后一行,计算需要添加的总空格数,并尽量均匀地分配到每个单词之间。如果有剩余空格,则优先分配给左边的间隔。
- 处理最后一行:最后一行只需左对齐,单词间只插入一个空格,其余部分用空格填充至
maxWidth
。 - 构建结果:将每一行