8、格约化算法的概率分析与滑动算法解析

格约化算法的概率分析与滑动算法解析

引言

格约化算法在密码学、计算数论和整数规划等多个领域都有重要应用。然而,其一般行为目前还远未被完全理解。本文将介绍两种相关内容,一是滑动算法(Slide Algorithm)的原理和复杂度分析,二是格约化算法的概率分析方法,包括专用建模、概率方法和动力系统方法。

滑动算法

滑动算法是一种用于块 - 莫德尔(block - Mordell)约化格基的多项式时间算法,使用了维度不超过 $k$ 的最短向量问题(SVP)预言机。

算法输入与输出
  • 输入 :格 $L$ 的一个基 $(b_1, \cdots, b_d)$,约化因子 $\epsilon > 0$,以及能整除 $d$ 的块大小 $k \geq 2$。
  • 输出 :基 $(b_1, \cdots, b_d)$ 是具有因子 $\epsilon$ 和块大小 $k$ 的块 - 莫德尔约化基。
算法步骤
1: 使用算法 6 对 $(b_1, \cdots, b_d)$ 进行 LLL 约化。
2: 如果存在 $j \in \{1, \cdots, d\}$ 使得 $j \equiv 1 \pmod{k}$ 且 $j$ 不满足 (2.44),则
3:     使用维度 $\leq k$ 的 SVP 预言机对块 $B[j, j + k - 1]$ 进行局部 HKZ 约化,使得 (2.44) 成立;然后返回步骤 1。块 $B[
欢迎使用“可调增益放大器 Multisim”设计资源包!本资源专为电子爱好者、学生以及工程师设计,旨在展示如何在著名的电路仿真软件Multisim环境下,实现一个具有创新性的数字控制增益放大器项目。 项目概述 在这个项目中,我们通过巧妙结合模拟电路数字逻辑,设计出一款独特且实用的放大器。该放大器的特点在于其增益可以被精确调控,并非固定不变。用户可以通过控制键,轻松地改变放大器的增益状态,使其在1到8倍之间平滑切换。每一步增益的变都直观地通过LED数码管显示出来,为观察和调试提供了极大的便利。 技术特点 数字控制: 使用数字输入来调整模拟放大器的增益,展示了数字信号对模拟电路控制的应用。 动态增益调整: 放大器支持8级增益调节(1x至8x),满足不同应用场景的需求。 可视的增益指示: 利用LED数码管实时显示当前的放大倍数,增强项目的交互性和实用性。 Multisim仿真环境: 所有设计均在Multisim中完成,确保了设计的仿真准确性和学习的便捷性。 使用指南 软件准备: 确保您的计算机上已安装最新版本的Multisim软件。 打开项目: 导入提供的Multisim项目文件,开始查看或修改设计。 仿真体验: 在仿真模式下测试放大器的功能,观察增益变及LED显示是否符合预期。 实验调整: 根据需要调整电路参数以优性能。 实物搭建 (选做): 参考设计图,在真实硬件上复现实验。
【数据融合】【状态估计】基于KF、UKF、EKF、PF、FKF、DKF卡尔曼滤波KF、无迹卡尔曼滤波UKF、拓展卡尔曼滤波数据融合研究(Matlab代码实现)内容概要:本文围绕状态估计数据融合技术展开,重点研究了基于卡尔曼滤波(KF)、无迹卡尔曼滤波(UKF)、扩展卡尔曼滤波(EKF)、粒子滤波(PF)、固定区间卡尔曼滤波(FKF)和分布式卡尔曼滤波(DKF)等多种滤波算法的理论Matlab实现,涵盖了非线性系统状态估计、多源数据融合、目标跟踪及传感器优等应用场景。文中通过Matlab代码实例演示了各类滤波方法在动态系统中的性能对比适用条件,尤其强调在复杂噪声环境和非线性系统中的实际应用价值。; 适合人群:具备一定信号处理、控制理论基础的研究生、科研人员及从事自动、导航、机器人、电力电子等相关领域的工程技术人员。; 使用场景及目标:①用于动态系统的状态估计噪声抑制,如目标跟踪、无人机姿态估计、电池SOC估算等;②为科研项目提供主流滤波算法的Matlab实现参考,支持算法复现性能对比;③辅助教学课程设计,帮助理解滤波算法的核心原理编程实现。; 阅读建议:建议结合Matlab代码实践操作,重点关注不同滤波算法在非线性、非高斯环境下的表现差异,建议读者按章节顺序学习,并参考文档中提供的网盘资源获取完整代码仿真模型以加深理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值