Codeforces Round #334 (Div. 1) ABC

本篇博客主要解析Codeforces Round #334 Division 1的比赛题目。针对A题,通过贪心策略解决连续字符问题;B题通过分类讨论k的值,结合模运算探讨不同情况下的解;C题利用SG函数分析有向无环图博弈,求解异或结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Alternative Thinking

        贪心。从左到右扫,找到最先出现的 和上个字符相同的 字符(连续的11或00)。从这个字符开始,只要它和上个字符相同,就反转,再往后考察,反转尽量多,直到字符相异时停止。最后统计一下即可。

#include <bits/stdc++.h>
using namespace std;

#define ll long long


char str[100010];

int main(){
	int n;
	cin>>n;
	
	scanf("%s",str);
	
	bool flag = 0;
	for(int i=1;i<n;i++){
		if(str[i]==str[i-1]){
			if(str[i]=='0')str[i]='1';
			else str[i]='0';
			flag=1;
		}else{
			if(flag)break;
		}
	} 
	
	int ans=1;
	for(int i=1;i<n;i++){
		if(str[i]!=str[i-1]){
			ans++;
		}
	}
	
	cout<<ans<<endl;
	return 0;
} 

Moodular Arithmetic

        分类讨论k=0,k=1,k>1。当k=0时,f(0)=0,f(x>0)可以是0~p-1任何数,答案就是p^(p-1)。当k=1时,f(x)可以是0~p-1任何数,答案就是p^p。当k>1时,统计有多少个相互制约的循环,也就是有多少组c1*f(x1)=c2*f(x2)=c3*f(x3)=...这种形式,每一组恰好有p个解,假设有cnt组,答案就是p^cnt。

#include <bits/stdc++.h>
using namespace std;

#define ll long long

const ll mod = 1000000007;

bool vis[1000010];

int main(){
	ll p,k;
	cin>>p>>k;
	
	ll pp=p;
	ll ans=1;
	if(k>1){
		int cnt=0;
		for(int i=1;i<pp;i++){
			if(vis[i])continue;
			vis[i]=1;
			ll cur=i;
			while(1){
				cur*=k;
				cur%=pp;
				if(vis[cur])break;
				vis[cur]=1;
			}
			cnt++;
		}
		while(cnt--){
			ans*=pp;
			ans%=mod;
		}
	}else if(k==1){
		while(p--){
			ans*=pp;
			ans%=mod;
		}
	}else{
		p--;
		while(p--){
			ans*=pp;
			ans%=mod;
		}
	}
	
	cout<<ans<<endl;
	return 0;
	
} 

Lieges of Legendre

        SG函数找规律(还是需要SG函数的方法论指导啊)。分析一下发现,当k是奇数的时候,不管k是几,效果都是一样的,因为这种有向无环图博弈游戏的组合,可以通过SG函数异或得到属于哪种局面;k为偶数的时候同理。只要分别求出两个SG函数,把所有a[i]的SG值异或起来即可。

#include <bits/stdc++.h>
using namespace std;

#define ll long long

int a[100010];
int tab[]={0,1,0,1,2,0,2,0,1,0,1};


int sg(int x){
	if(x<=10){
		return tab[x];
	}else{
		if(x&1)return 0;
		int tmp=sg(x>>1);
		if(tmp==0 || tmp==2)return 1;
		else return 2;
	}
}

int sgEven(int x){
	if(x==0){
		return 0;
	}else if(x==1){
		return 1;
	}else if(x==2){
		return 2;
	}else{
		if(x&1){
			return 0;
		}else{
			return 1;
		}
	}
}

int main(){
	int n,k;
	cin>>n>>k;
	
	for(int i=1;i<=n;i++){
		scanf("%d",&a[i]);
	}
	
	int sum=0;
	if(k&1){
		for(int i=1;i<=n;i++){
			sum^=sg(a[i]);
		}
	}else{
		for(int i=1;i<=n;i++){
			sum^=sgEven(a[i]);
		}
	}
	
	
	if(sum){
		cout<<"Kevin"<<endl;
	}else{
		cout<<"Nicky"<<endl;
	}
	
	return 0;
	
} 



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值