http://poj.org/problem?id=2607&&最短路

本文深入探讨了AI音视频处理领域中的关键技术,特别是视频分割与语义识别,旨在帮助开发者理解如何利用这些技术进行高效的内容分析与处理。
Fire Station
Time Limit: 5000MS Memory Limit: 65536K
Total Submissions: 3169 Accepted: 1130

Description

A city is served by a number of fire stations. Some residents have complained that the distance from their houses to the nearest station is too far, so a new station is to be built. You are to choose the location of the fire station so as to reduce the distance to the nearest station from the houses of the disgruntled residents.
The city has up to 500 intersections, connected by road segments of various lengths. No more than 20 road segments intersect at a given intersection. The location of houses and firestations alike are considered to be at intersections (the travel distance from the intersection to the actual building can be discounted). Furthermore, we assume that there is at least one house associated with every intersection. There may be more than one firestation per intersection.

Input

The first line of input contains two positive integers: f,the number of existing fire stations (f <= 100) and i, the number of intersections (i <= 500). The intersections are numbered from 1 to i consecutively. f lines follow; each contains the intersection number at which an existing fire station is found. A number of lines follow, each containing three positive integers: the number of an intersection, the number of a different intersection, and the length of the road segment connecting the intersections. All road segments are two-way (at least as far as fire engines are concerned), and there will exist a route between any pair of intersections.

Output

You are to output a single integer: the lowest intersection number at which a new fire station should be built so as to minimize the maximum distance from any intersection to the nearest fire station.

Sample Input

1 6
2
1 2 10
2 3 10
3 4 10
4 5 10
5 6 10
6 1 10

Sample Output

5
题意:为了尽可能的减少居民离消防站的不满意度(所有居民离其最近的消防站距离最大值),现在决定让你选一个新的地址使得不满意度最小,,
思路:先对当前已经存在的消防站求最短路径,然后枚举没有建消防站的地址,求最短路,找出最小的那个即为新选的地址。。。
#include<vector>
#include<iostream>
#include<algorithm>
#include<queue>
#include<string.h>
#include<string>
#include<cstdio>
#define inf 0xffffff
#define M 505
using namespace std;
int len[M],tmplen[M];
struct Gnode
{
	Gnode() {}
	Gnode(int len,int num):len(len),num(num) {}
	int len,num;
};
vector<int>fire;
void SPFA(const vector<vector<Gnode> >&Graph,int start)
{
	queue<int> Q;
	Q.push(start);
	len[start]=0;
	while(!Q.empty())
	{
		int cur=Q.front();Q.pop();
		for(int i=0;i<Graph[cur].size();++i)
		{
			if(len[cur]!=inf&&len[cur]+Graph[cur][i].len<len[Graph[cur][i].num])
			{
				len[Graph[cur][i].num]=len[cur]+Graph[cur][i].len;
				Q.push(Graph[cur][i].num);
			}
		}
	}
}
int main()
{
	int f,n;
	while(~scanf("%d%d",&f,&n))
	{
		vector<vector<Gnode> >Graph(n);
		fire.clear();
		bool visit[M];
	    memset(visit,false,sizeof(visit));
		for(int i=0;i!=f;++i)
		{
			int a;
			scanf("%d",&a);
			fire.push_back(a-1);
			visit[a-1]=true;
		}
		getchar();
		char str[100];
		while(gets(str)&&strlen(str))
		{  int a,b,len;
			sscanf(str,"%d%d%d",&a,&b,&len);
			Graph[a-1].push_back(Gnode(len,b-1));
			Graph[b-1].push_back(Gnode(len,a-1));
		}
		for(int i=0;i<n;++i) len[i]=inf;
		for(int i=0;i<fire.size();++i)
		  SPFA(Graph,fire[i]);
		copy(len,len+n,tmplen);
		int p,min=inf;
		for(int i=0;i!=n;++i)
			if(!visit[i])
	      {
				SPFA(Graph,i);
				  int maxx=*max_element(len,len+n);
				if(maxx<min){p=i;min=maxx;}
			    copy(tmplen,tmplen+n,len);
			}
		printf("%d\n",p+1);
	}return 0;
}


<think>首先,用户想了解POJ 3104题目的详细信息,包括题目描述、解题思路和代码实现。用户提供了几个引用,我需要参考这些引用,但要根据用户的问题来整合。 回顾用户提供的引用: - 引用[1]:是关于POJ 3104 "Drying"的二分查找解法。它解释了算法:对于每个衣服的水量ai,如果ai小于等于mid(时间),则自然晾干;否则,需要机器烘干和自然晾干结合,并给出了公式x1 >= (ai - mid)/(k-1),其中k是烘干机的效率。代码是用C++写的,实现了二分查找。 - 引用[2]:简要描述了输入格式:第一行是n(衣服数量),第二行是ai(每个衣服的初始水量),第三行是k(烘干机的效率)。 - 引用[3]:提供了数学计算+二分的题解,解释了公式:吹风次数k = (a[i] - mid)/(m-1),其中m是k(烘干效率),但这里变量名冲突了。应该是k是烘干效率,吹风次数是ceil((a[i]-mid)/(k-1))。 - 引用[4]:类似引用[2],描述了输入格式。 用户的问题是:"我想查找POJ 3104题目的相关信息,可能包括题目描述、解题思路、代码实现等 请问POJ 3104题目解析及代码实现"。 所以,我需要提供: 1. 题目描述:基于引用,POJ 3104是"Drying"问题。输入包括n个衣服的初始水量ai和烘干机效率k。目标是找到小时间使所有衣服干燥。衣服每分钟自然晾干1单位水;使用烘干机每分钟晾干k单位水,但烘干机每分钟只能用于一件衣服。 2. 解题思路:使用二分查找来小化时间。思路是假设一个时间mid,检查是否能在mid时间内干燥所有衣服。对于每件衣服,如果ai <= mid,自然晾干即可;否则,需要烘干机帮助,时间为ceil((ai - mid)/(k-1))总烘干时间不能超过mid。 3. 代码实现:基于引用[1]的C++代码,我可以提供一个清晰的版本。 系统指令要求: - 行内数学表达式用$...$,例如 $x^2$。 - 独立公式用$$...$$并单独成段。 - 使用中文回答。 - 生成相关问题。 - 回答中引用的段落末尾自然地添加引用标识[^1]。 - 回答结构清晰,逐步解决问题,保证真实可靠。 组织回答: 1. **题目描述**:描述POJ 3104问题。 2. **解题思路**:详细解释二分查找方法,数学公式。 3. **代码实现**:提供C++代码(基于引用[1]),并解释关键部分。 4. **相关问题**:在末尾生成相关问题。 确保LaTeX语法正确: - 例如,公式 $(ai - mid)/(k-1)$ 应该用LaTeX表示:$\frac{a_i - \text{mid}}{k-1}$。 - 向上取整用 $\lceil \cdot \rceil$。 代码块要正确格式。 现在,构建回答。 **题目描述**: POJ 3104 "Drying" 是一个关于烘干衣服的问题。给定n件衣服,每件衣服有一个初始水量 $a_i$($1 \leq a_i \leq 10^9$)。衣服每分钟自然晾干1单位水。如果使用烘干机,每分钟可以额外晾干k单位水($1 \leq k \leq 10^9$),但烘干机每分钟只能用于一件衣服。目标是找到小时间使所有衣服干燥[^2][^4]。 **解题思路**: 使用二分查找来优化时间。设小时间为T。对于每个候选时间mid,检查是否能在mid分钟内干燥所有衣服。 - 对于一件衣服,如果初始水量 $a_i \leq \text{mid}$,则自然晾干即可。 - 如果 $a_i > \text{mid}$,则需要使用烘干机。设自然晾干时间为 $x_2$,烘干时间为 $x_1$,则总时间 $x_1 + x_2 = \text{mid}$,且晾干的水量为 $k \cdot x_1 + x_2 \geq a_i$。 代入 $x_2 = \text{mid} - x_1$,得: $$ k \cdot x_1 + (\text{mid} - x_1) \geq a_i $$ 简化得: $$ (k-1) x_1 \geq a_i - \text{mid} $$ 因此,烘干时间 $x_1 \geq \frac{a_i - \text{mid}}{k-1}$。由于 $x_1$ 必须是整数且不能为负,实际所需烘干时间为 $\lceil \frac{a_i - \text{mid}}{k-1} \rceil$。 检查时,计算所有衣服的烘干时间之和 $\sum \lceil \frac{a_i - \text{mid}}{k-1} \rceil$。如果这个和小于等于mid,则mid可行[^3]。 注意:当 $k=1$ 时,烘干机无效,只能自然晾干,所以小时间是 $\max(a_i)$。 **代码实现**: 以下是基于C++的实现: ```cpp #include <iostream> #include <algorithm> #include <cmath> using namespace std; const int MAXN = 100010; int a[MAXN]; int n, k; bool check(int mid) { long long need = 0; // 总烘干时间 for (int i = 0; i < n; i++) { if (a[i] <= mid) continue; // 计算所需烘干时间,向上取整 need += (long long)ceil((double)(a[i] - mid) / (k - 1)); if (need > mid) return false; // 超过时间限制 } return true; } int main() { cin >> n; for (int i = 0; i < n; i++) { cin >> a[i]; } cin >> k; sort(a, a + n); // 排序有助于优化,但非必需 if (k == 1) { cout << a[n-1] << endl; // 大水量 return 0; } int l = 0, r = a[n-1]; // 时间范围,大可能时间为大水量 while (l < r) { int mid = l + (r - l) / 2; // 避免溢出 if (check(mid)) { r = mid; // 可行,尝试更小时间 } else { l = mid + 1; // 不可行,增加时间 } } cout << l << endl; return 0; } ``` 代码解释: - `check(mid)` 函数检查mid时间是否足够。 - 使用`long long`防止溢出,因为水量可能很大。 - 当$k=1$时,直接输出大水量。 - 二分查找范围是[0, max(a_i)]。 **相关问题**: 在末尾生成几个相关问题。 确保引用: - 在描述中添加[^2][^4],但用户提供的引用是参考,所以我可以自然地引用它们。 终回答结构: - 题目描述 - 解题思路 - 代码实现 - 相关问题 </think> ### POJ 3104 "Drying" 题目解析及代码实现 #### 题目描述 POJ 3104 "Drying" 是一个优化问题:给定 $n$ 件衣服,每件有初始水量 $a_i$($1 \leq a_i \leq 10^9$)。衣服每分钟自然晾干 1 单位水;若使用烘干机,每分钟可额外干燥 $k$ 单位水($1 \leq k \leq 10^9$),但每分钟只能处理一件衣服。目标是找到小时间 $T$,使得所有衣服完全干燥[^2]。 **输入格式**: - 第一行:整数 $n$(衣服数量) - 第二行:$n$ 个整数 $a_i$(初始水量) - 第三行:整数 $k$(烘干机效率) **输出格式**: 小干燥时间 $T$。 --- #### 解题思路 使用**二分查找**求解小时间 $T$。核心思想是:假设一个候选时间 $\text{mid}$,检查是否能在 $\text{mid}$ 分钟内干燥所有衣服。验证函数基于以下逻辑: 1. **自然晾干**:若 $a_i \leq \text{mid}$,衣服自然晾干即可,无需额外处理。 2. **机器辅助**:若 $a_i > \text{mid}$,需结合烘干机和自然晾干。设: - $x_1$:烘干机使用时间(每分钟干燥 $k$ 单位) - $x_2$:自然晾干时间(每分钟干燥 1 单位) 总时间约束为 $x_1 + x_2 = \text{mid}$,水量约束为 $k \cdot x_1 + x_2 \geq a_i$。 代入 $x_2 = \text{mid} - x_1$ 得: $$ k \cdot x_1 + (\text{mid} - x_1) \geq a_i \implies (k-1) x_1 \geq a_i - \text{mid} $$ 因此,烘干时间需满足: $$ x_1 \geq \frac{a_i - \text{mid}}{k-1} $$ 实际计算时,需对 $\frac{a_i - \text{mid}}{k-1}$ **向上取整**,即 $\lceil \frac{a_i - \text{mid}}{k-1} \rceil$。 3. **可行性检查**:所有衣服的烘干时间之和 $\sum \lceil \frac{a_i - \text{mid}}{k-1} \rceil$ 必须 $\leq \text{mid}$。 4. **特例**:若 $k=1$,烘干机无效,小时间 $T = \max(a_i)$。 **算法步骤**: 1. 对 $a_i$ 排序(可选优化)。 2. 二分查找 $T$:初始范围 $[0, \max(a_i)]$。 - 若 $\text{check}(\text{mid})$ 返回 `true`,则尝试更小时间($r = \text{mid}$)。 - 否则尝试更大时间($l = \text{mid} + 1$)。 --- #### 代码实现(C++) ```cpp #include <iostream> #include <algorithm> #include <cmath> using namespace std; const int MAXN = 100010; int a[MAXN]; int n, k; // 检查mid时间是否可行 bool check(int mid) { long long need = 0; // 总烘干时间(防溢出) for (int i = 0; i < n; i++) { if (a[i] <= mid) continue; // 自然晾干即可 need += (long long)ceil((double)(a[i] - mid) / (k - 1)); // 向上取整 if (need > mid) return false; // 超过时间限制 } return need <= mid; } int main() { cin >> n; for (int i = 0; i < n; i++) cin >> a[i]; cin >> k; if (k == 1) { cout << *max_element(a, a + n) << endl; // 特例:k=1时直接输出大值 return 0; } sort(a, a + n); // 排序优化二分 int l = 0, r = a[n - 1]; // 时间范围 [0, 大水量] while (l < r) { int mid = l + (r - l) / 2; // 避免溢出 if (check(mid)) r = mid; // 可行,尝试更小时间 else l = mid + 1; // 不可行,增加时间 } cout << l << endl; return 0; } ``` **代码说明**: - **`check` 函数**:计算每件衣服所需烘干时间,并检查总和是否 $\leq \text{mid}$。 - **向上取整处理**:使用 `ceil((double)(a[i] - mid) / (k - 1))` 确保精度。 - **时间复杂度**:$O(n \log (\max(a_i)))$,高效处理大数据范围。 - **注意事项**:当 $k=1$ 时需单独处理,避免除零错误。 --- #### 相关问题 1. 如何证明二分查找在该问题中的正确性? 2. 当 $k$ 接近 1 时,算法性能是否会退化?如何优化? 3. 是否存在其他方法(如贪心或动态规划)解决此问题? 4. 在实现中,为什么使用 `long long` 存储烘干时间? [^1]: POJ 3104 Drying (二分) 解题思路及代码实现参考。 [^2]: POJ-3104 Drying 输入格式描述。 [^3]: Poj---3104 数学计算+二分操作详解。 : POJ - 3104 Drying 题目约束说明。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值