题意中文不解释。。
思路:以每个物品当做图中的顶点,以优惠的价格为边权,建图,这里让求需要的最少金币,故可以转化为最短路问题,这里引入一个超级源点0,可以看做是每个物品都可以和自己交换,但没有优惠价格,当找不到可交换的物品时(只能和自己交换),则返回当前的最短路径长度,即是所需要的最少金币。
#include<iostream>
#include<vector>
#include<algorithm>
#include<string.h>
#include<queue>
#include<cstdio>
#define N 105
using namespace std;
struct Gnode
{
Gnode() {}
Gnode(int len,int num):len(len),num(num) {}
int len,num;
};
struct Gnode1
{
Gnode1() {}
Gnode1(int num,int dis,int maxlev,int minlev):num(num),dis(dis),maxlev(maxlev),minlev(minlev) {}
int num,dis,maxlev,minlev;
bool operator< (const Gnode1 &now) const
{return now.dis<dis;}
};
int lev[N],dlev;
int dijkstra(vector<vector<Gnode> >&Graph)
{
priority_queue<Gnode1> Q;
Q.push(Gnode1(1,0,lev[1],lev[1]));
while(1)
{
Gnode1 cur=Q.top();
if(cur.num==0) return cur.dis;
for(int i=0;i<Graph[cur.num].size();++i)
{
if(Graph[cur.num][i].num==0||(cur.maxlev-lev[Graph[cur.num][i].num]<=dlev&&lev[Graph[cur.num][i].num]-cur.minlev<=dlev))
{
int maxx=max(cur.maxlev,lev[Graph[cur.num][i].num]);
int minx=min(cur.minlev,lev[Graph[cur.num][i].num]);
Q.push(Gnode1(Graph[cur.num][i].num,cur.dis+Graph[cur.num][i].len,maxx,minx));
}
}
Q.pop();
}
}
int main()
{
int n;
while(cin>>dlev>>n&&dlev&&n)
{
vector<vector<Gnode> >Graph (n+1);
memset(lev,0,sizeof(lev));
for(int i=1;i<=n;++i)
{
int price,m;
cin>>price>>lev[i]>>m;
Graph[i].push_back(Gnode(price,0));
for(int j=0;j!=m;++j)
{
int a,b;
cin>>a>>b;
Graph[i].push_back(Gnode(b,a));
}
}
cout<<dijkstra(Graph)<<endl;
}return 0;
}