Graph Concepts

本文深入探讨了Boost Graph Library中图概念的分层结构,详细解释了如何通过接口和概念来操作和操纵图数据结构,适用于算法设计者选择最适合其需求的概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Graph Concepts

The heart of the Boost Graph Library (BGL) is the interface, or concepts (in the parlance of generic programming), that define how a graph can be examined and manipulated in a data-structure neutral fashion. In fact, the BGL interface need not even be implemented using a data-structure, as for some problems it is easier or more efficient to define a graph implicitly based on some functions.

The BGL interface does not appear as a single graph concept. Instead it is factored into much smaller pieces. The reason for this is that the purpose of a concept is to summarize the requirements forparticular algorithms. Any one algorithm does not need every kind of graph operation, typically only a small subset. Furthermore, there are many graph data-structures that can not provide efficient implementations of all the operations, but provide highly efficient implementations of the operations necessary for a particular algorithm. By factoring the graph interface into many smaller concepts we provide the graph algorithm writer with a good selection from which to choose the concept that is the closest match for their algorithm. Note that because of the use of traits classes rather than member types, it is not safe (and often will not work) to define subclasses of BGL graph types; those types may be missing important traits and properties that were defined externally to the class definition.

Graph Structure Concepts Overview

Figure 1 shows the refinements relations between the graph concepts. The reason for factoring the graph interface into so many concepts is to encourage algorithm interfaces to require and use only the minimum interface of a graph, thereby increasing the reusability of the algorithm.

Figure 1: The graph concepts and refinement relationships.

Table 1  gives a summary of the valid expressions and associated types for the graph concepts and provides links to the detailed descriptions of each of the concepts. The notation used in the table is as follows.

Notation

GA type that is a model of Graph.
gAn object of type G.
eAn object of type boost::graph_traits<G>::edge_descriptor.
e_iterAn object of type boost::graph_traits<G>::out_edge_iterator.
u,vAre objects of type boost::graph_traits<G>::vertex_descriptor.
epis an object of type G::edge_property_type
vpis an object of type G::vertex_property_type
PropertyA type used to specify a vertex or edge property.
propertyAn object of type Property.


Table 1: Summary of the graph concepts.
ExpressionReturn Type or Description
Graph
boost::graph_traits<G>::vertex_descriptorThe type for vertex representative objects.
boost::graph_traits<G>::edge_descriptorThe type for edge representative objects.
boost::graph_traits<G>::directed_categoryDirected or undirected?
boost::graph_traits<G>::edge_parallel_categoryAllow parallel edges?
boost::graph_traits<G>::traversal_categoryThe ways in which the vertices and edges of the graph can be visited.
IncidenceGraph refines Graph
boost::graph_traits<G>::out_edge_iteratorIterate through the out-edges.
boost::graph_traits<G>::degree_size_typeThe integer type for vertex degee.
out_edges(v, g)std::pair<out_edge_iterator, out_edge_iterator>
source(e, g)vertex_descriptor
target(e, g)vertex_descriptor
out_degree(v, g)degree_size_type
BidirectionalGraph refines IncidenceGraph
boost::graph_traits<G>::in_edge_iteratorIterate through the in-edges.
in_edges(v, g)std::pair<in_edge_iterator, in_edge_iterator>
in_degree(v, g)degree_size_type
degree(e, g)degree_size_type
AdjacencyGraph refines Graph
boost::graph_traits<G>::adjacency_iteratorIterate through adjacent vertices.
adjacent_vertices(v, g)std::pair<adjacency_iterator, adjacency_iterator>
VertexListGraph refines Graph
boost::graph_traits<G>::vertex_iteratorIterate through the graph's vertex set.
boost::graph_traits<G>::vertices_size_typeThe unsigned integer type for number of vertices in the graph.
vertices(g)std::pair<vertex_iterator, vertex_iterator>
num_vertices(g)vertices_size_type
EdgeListGraph refines Graph
boost::graph_traits<G>::edge_iteratorIterate through the graph's edge set.
boost::graph_traits<G>::edges_size_typeThe unsigned integer type for number of edges in the graph.
edges(g)std::pair<edge_iterator, edge_iterator>
num_edges(g)edges_size_type
source(e, g)vertex_descriptor
target(e, g)vertex_descriptor
AdjacencyMatrix refines Graph
edge(u, v, g)std::pair<edge_descriptor, bool>
MutableGraph refines Graph
add_vertex(g)vertex_descriptor
clear_vertex(v, g)void
remove_vertex(v, g)void
add_edge(u, v, g)std::pair<edge_descriptor, bool>
remove_edge(u, v, g)void
remove_edge(e, g)void
remove_edge(e_iter, g)void
MutablePropertyGraph refines Graph
add_vertex(vp, g)vertex_descriptor
add_edge(u, v, ep, g)std::pair<edge_descriptor, bool>
PropertyGraph refines Graph
boost::property_map<G, Property>::typeType for a mutable property map.
boost::property_map<G, Property>::const_typeType for a non-mutable property map.
get(property, g)Function to get a property map.
get(property, g, x)Get property value for vertex or edge x.
put(property, g, x, v)Set property value for vertex or edge x to v.


Undirected Graphs

The interface that the BGL provides for accessing and manipulating an undirected graph is the same as the interface for directed graphs described in the following sections, however there are some differences in the behaviour and semantics. For example, in a directed graph we can talk about out-edges and in-edges of a vertex. In an undirected graph there is no ``in'' and ``out'', there are just edges incident to a vertex. Nevertheless, in the BGL we still use the out_edges() function (or in_edges()) to access the incident edges in an undirected graph. Similarly, an undirected edge has no ``source'' and ``target'' but merely an unordered pair of vertices, but in the BGL we still use source() and target() to access these vertices. The reason the BGL does not provide a separate interface for undirected graphs is that many algorithms on directed graphs also work on undirected graphs, and it would be inconvenient to have to duplicate the algorithms just because of an interface difference. When using undirected graphs just mentally disregard the directionality in the function names. The example below demonstrates using the out_edges()source(), and target() with an undirected graph. The source code for this example and the following one can be found in example/undirected_adjacency_list.cpp.

  const int V = 2;
  typedef ... UndirectedGraph;
  UndirectedGraph undigraph(V);

  std::cout << "the edges incident to v: ";
  boost::graph_traits<UndirectedGraph>::out_edge_iterator e, e_end;
  boost::graph_traits<UndirectedGraph>::vertex_descriptor 
    s = vertex(0, undigraph);
  for (boost::tie(e, e_end) = out_edges(s, undigraph); e != e_end; ++e)
    std::cout << "(" << source(*e, undigraph) 
              << "," << target(*e, undigraph) << ")" << endl;

Even though the interface is the same for undirected graphs, there are some behavioral differences because edge equality is defined differently. In a directed graph, edge (u,v) is never equal to edge(v,u), but in an undirected graph they may be equal. If the undirected graph is a multigraph then (u,v) and (v,u) might be parallel edges. If the graph is not a multigraph then (u,v) and (v,u) must be the same edge.

In the example below the edge equality test will return false for the directed graph and true for the undirected graph. The difference also affects the meaning of add_edge(). In the example below, if we had also written add_edge(v, u, undigraph), this would have added a parallel edge between u and v (provided the graph type allows parallel edges). The difference in edge equality also affects the association of edge properties. In the directed graph, the edges (u,v) and (v,u) can have distinct weight values, whereas in the undirected graph the weight of (u,v) is the same as the weight of (v,u) since they are the same edge.

  typedef ... DirectedGraph;
  DirectedGraph digraph(V);
  {
    boost::graph_traits<DirectedGraph>::vertex_descriptor u, v;
    u = vertex(0, digraph);
    v = vertex(1, digraph);
    add_edge(digraph, u, v, Weight(1.2));
    add_edge(digraph, v, u, Weight(2.4));
    boost::graph_traits<DirectedGraph>::edge_descriptor e1, e2;
    bool found;
    boost::tie(e1, found) = edge(u, v, digraph);
    boost::tie(e2, found) = edge(v, u, digraph);
    std::cout << "in a directed graph is ";
    std::cout << "(u,v) == (v,u) ? " << (e1 == e2) << std::endl;

    property_map<DirectedGraph, edge_weight_t>::type
      weight = get(edge_weight, digraph);
    cout << "weight[(u,v)] = " << get(weight, e1) << endl;
    cout << "weight[(v,u)] = " << get(weight, e2) << endl;
  }
  {
    boost::graph_traits<UndirectedGraph>::vertex_descriptor u, v;
    u = vertex(0, undigraph);
    v = vertex(1, undigraph);
    add_edge(undigraph, u, v, Weight(3.1));
    boost::graph_traits<UndirectedGraph>::edge_descriptor e1, e2;
    bool found;
    boost::tie(e1, found) = edge(u, v, undigraph);
    boost::tie(e2, found) = edge(v, u, undigraph);
    std::cout << "in an undirected graph is ";
    std::cout << "(u,v) == (v,u) ? " << (e1 == e2) << std::endl;

    property_map<UndirectedGraph, edge_weight_t>::type
      weight = get(edge_weight, undigraph);
    cout << "weight[(u,v)] = " << get(weight, e1) << endl;
    cout << "weight[(v,u)] = " << get(weight, e2) << endl;
  }
The output is:
in a directed graph is (u,v) == (v,u) ? 0
weight[(u,v)] = 1.2
weight[(v,u)] = 2.4
in an undirected graph is (u,v) == (v,u) ? 1
weight[(u,v)] = 3.1
weight[(v,u)] = 3.1
### Pipeline Graphs in Data Processing and CI/CD Systems In the context of data processing, pipeline graphs represent a series of operations that transform raw input into processed output through multiple stages. Each node within such pipelines can be seen as an operator performing specific tasks like filtering, mapping, or aggregating data[^1]. For instance, Spark's execution model leverages these concepts by optimizing logical plans to physical ones using cost-based optimization techniques. For continuous integration (CI) and continuous deployment (CD), pipeline graphs define workflows from code commit until production release. These graphical representations allow developers to visualize each step involved—from running tests on new changesets up till deploying approved versions onto live servers. Tools like Jenkins X, GitLab CI, CircleCI provide visual interfaces where users configure jobs/steps interconnected via directed acyclic graphs (DAG). #### Example Code Snippet Demonstrating Simple ETL Process Using Apache Beam SDK for Python Apache Beam is one framework supporting both batch and stream processing models while abstracting away underlying runners including Google Cloud Dataflow, Flink, etc. ```python import apache_beam as beam with beam.Pipeline() as p: result = ( p | 'ReadFromSource' >> beam.io.ReadFromText('input.txt') | 'ProcessRecords' >> beam.Map(lambda line: process_line(line)) | 'WriteToSink' >> beam.io.WriteToText('output.txt')) ``` This snippet shows how easily complex transformations over large datasets could be expressed declaratively with minimal boilerplate code required around managing distributed computations explicitly. --related questions-- 1. How does predicate pushdown improve query performance during data retrieval? 2. What challenges exist when scaling GCNs to very large networks containing billions of nodes? 3. Can you explain more about DAG structures used in modern CI platforms? 4. In what ways do different big-data frameworks implement their own version of pipelining mechanisms?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值