Lesson15 Reductions

本文介绍了Eigen库中矩阵的基本运算方法,包括求和、乘积、平均值、最小值、最大值及迹等操作,并通过一个2x2矩阵的具体实例展示了这些函数的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

In Eigen, a reduction is a function taking a matrix or array, and returning a single scalar value. One of the most used reductions is .sum() , returning the sum of all the coefficients inside a given matrix or array.

Example: Output:
#include <iostream>
#include <Eigen/Dense>
using namespace std;
int main()
{
mat << 1, 2,
3, 4;
cout << "Here is mat.sum(): " << mat. sum() << endl;
cout << "Here is mat.prod(): " << mat. prod() << endl;
cout << "Here is mat.mean(): " << mat. mean() << endl;
cout << "Here is mat.minCoeff(): " << mat. minCoeff() << endl;
cout << "Here is mat.maxCoeff(): " << mat. maxCoeff() << endl;
cout << "Here is mat.trace(): " << mat. trace() << endl;
}
Here is mat.sum():       10
Here is mat.prod():      24
Here is mat.mean():      2.5
Here is mat.minCoeff():  1
Here is mat.maxCoeff():  4
Here is mat.trace():     5

The trace of a matrix, as returned by the function trace(), is the sum of the diagonal coefficients and can equivalently be computed a.diagonal().sum().

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值