直方图均衡化算法原理与实现(三)

直方图均衡化算法原理与实现
工作后,对原来学习的一些基本图像处理算法有了一些新的认识,比如Canny 算法,直方图均衡化算法等,今天就来说说直方图均衡化算法。

直方图均衡化原理
我们知道提高图像对比度的变换函数f(x)需要满足一下条件:

f(x)在0<=x<=L−1上单调递增(不要求严格单调递增),其中L表示灰度级(L=256)
f(x)的范围是[0,L−1]
我们知道当图像直方图完全均匀分布的时候,此时图像的熵是最大的(随机变量每个值的概率都相同时,概率最大),图像对比度是最大的。所以,理想情况下,图像经过变换函数f(x)

变换后,直方图能够均匀分布,此时对比度是最大的。

那问题来了?怎样的变换函数具有如此神奇的功能呢?[1]P74中给出了答案。
在图像处理中,有一个重要的函数,能够满足上面的条件:
在这里插入图片描述
其中px(x)表示概率密度函数,在离散的图像中,表示直方图的每个灰度级的概率(在图像中,灰度级就可以看成是一个随机变量,而直方图就是该随机变量的概率密度函数),由概率论的知识,我们可以知道,变换函数f(x)其实就是连续型随机变量x的分布函数,表示的是函数下方的面积
在这里插入图片描述
分布函数的两个性质:1.单调不减 2.值域为[0,1],我们可以知道f(x)满足条件1和2

有人可能会有这个疑问?图像是离散的,为什么可以用连续的来表示呢?从数学角度来看,离散是连续的一种特例(图像就是一个很好的例子)。

下面我们证明变换后的直方图是均匀的。
由概率论知识,变换后的概率密度:

在这里插入图片描述
看到了吧,变换后的概率密度函数是一个均匀分布,对于图像来说,就是每个灰度级概率都是相等的,达到了我们的目的。
下面我们需要将这个变换函数转换为图像中的表达,图像中,我们可以知道,可以使用求和代替积分,差分代替微分,所以上述的变换函数就是:

在这里插入图片描述

直方图均衡化算法实现
根据上面的推导,算法实现如下:

//不支持OpenCV的ROI
void GetHistogram(const Mat &image, int *histogram)
{
    memset(histogram, 0, 256 * sizeof(int));
 
    //计算直方图
    int pixelCount = image.cols*image.rows;
    uchar *imageData = image.data;
    for (int i = 0; i <= pixelCount - 1; ++i)
    {
        int gray = imageData[i];
        histogram[gray]++;
    }
}
 
void EqualizeHistogram(const Mat &srcImage, Mat &dstImage)
{
    CV_Assert(srcImage.type() == CV_8UC1);
    dstImage.create(srcImage.size(), srcImage.type());
 
    // 计算直方图
    int histogram[256];
    GetHistogram(srcImage, histogram);
 
    // 计算分布函数(也就是变换函数f(x))
    int numberOfPixel = srcImage.rows*srcImage.cols;
    int LUT[256];
    LUT[0] = 1.0*histogram[0] / numberOfPixel*255;
    int sum = histogram[0];
    for (int i = 1; i <= 255; ++i)
    {
        sum += histogram[i];
 
        LUT[i] = 1.0*sum / numberOfPixel * 255;
    }
 
    // 灰度变换
    uchar *dataOfSrc = srcImage.data;
    uchar *dataOfDst = dstImage.data;
    for (int i = 0; i <= numberOfPixel - 1; ++i)
        dataOfDst[i] = LUT[dataOfSrc[i]];
}

原图
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值