图像处理学习笔记之直方图的计算与绘制

这篇博客介绍了图像处理中的直方图概念,包括其反映的图像信息和不同图像类型的直方图特征。文章详细阐述了OpenCV中的calchist函数用于计算图像直方图,并探讨了如何使用QChart库展示直方图,特别是在彩色图像分通道处理和鼠标交互方面,提供了一段使用QT6.2.2的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图像直方图包含丰富的图像细节信息,反映了图像像素点的概率分布情况,它统计了每一个强度值具有的像素个数。灰度级范围是[0,L-1]的数字图像的直方图是离散函数h(rk)=nk,其中是rk第k级灰度值,nk是图像中灰度为rk的像素个数。在实践中,经常用乘积MN表示的图像像素总数除它的每个分量来归一化直方图,MN是图像的行列数。因此归一化后的直方图由p(rk)=nk/MN给出。直方图的横坐标表示灰度级,纵坐标表示图像中该灰度级出现的次数(频率)。

一般来说,在暗图像中,直方图的分量集中在灰度级较低的一侧。亮图像的直方图分量集中在灰度级值较高的一侧。低对比度的图像具有较窄的直方图,且集中于灰度级的中部。高对比度的图像中直方图的分量覆盖了很宽的灰度级范围。

图1 亮图像及其灰度直方图

图2 暗图像及其灰度直方图

图3 高对比度图像及其灰度直方图

图4 低对比度图像及其灰度直方图

opencv中提供了calchist函数用于计算图像的直方图。其声明如下:

void calcHist(const Mat* arrays, int narrays, const int* channels, InputArray mask, OutputArray hist, int dims, const int* histSize, const float** ranges, bool uniform=true, bool accumulate=false );

  • arrays:源输入图像数组,可以是多幅图像,所有的图像必须有同样的深度(CV_8U or CV_32F),同时一副图像可以有多个channes。
  • narrays:源输入数组中的元素个数
  • channels:用来计算直方图的通道维数数组,第一个数组的通道由0到arrays[0].channels()-1列出,第二个数组的通道从arrays[0].channels()到arrays[0].channels()+arrays[1].channels()-1以此类推
  • mask:可选的掩膜,如果该矩阵不是空的,则必须是8位的并且与arrays[i]的大小相等,掩膜的非零值标记需要在直方图中统计的数组元素;
  • hist:输出直方图,是一个稠密或者稀疏的dims维的数组
  • dims:直方图的维数,必须为正,并且不大于CV_MAX_DIMS(当前的OpenCV版本中为32,即最大可以统计32维的直方图);
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值