PCL KD树的使用

目录

一、概述

1.1原理

1.1.1 数据拆分过程

1.1.2 树的构建示例

1.2实现步骤

1.3应用场景

二、代码实现

2.1关键函数

2.1.1KD树构建与查询:

2.1.2 k近邻搜索

 2.1.3半径搜索

2.2完整代码

三、实现效果

3.1处理后点云

3.2数据显示


PCL点云算法汇总及实战案例汇总的目录地址链接:

PCL点云算法与项目实战案例汇总(长期更新)


一、概述

        KD树(K-D Tree)是一种用于组织k维空间中的点的数据结构,常用于高效的最近邻搜索、范围查询等操作。KD树通过递归地将空间划分成k维的超矩形,使得在高维空间中的搜索变得更加高效。本文将详细介绍KD树的构建原理及其在PCL中的应用。

1.1原理

        KD树的全称是k维树(k-Dimensional Tree),它是一种二叉树,用于对k维空间中的点进行组织,以便于快速

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MelaCandy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值