1、Kd树(K-dimensional tree)简介
Kd树是一种用于组织k维空间中点的数据结构,主要用于高效地进行范围搜索和最近邻搜索。Kd树是二叉树的一种,每个节点代表一个k维空间中的点,并且通过递归地将空间划分为两个子空间来构建。
2、Kd树的构建过程
- 选择分割维度:在构建Kd树时,通常选择方差最大的维度作为分割维度,或者简单地轮流选择各个维度。
- 选择分割点:在选定的维度上,选择中位数作为分割点,这样可以保证树的平衡。
- 递归构建:将数据集分为两部分,分别递归地构建左子树和右子树。
3、Kd树的搜索
- 最近邻搜索:从根节点开始,递归地向下搜索,直到找到叶子节点。然后回溯,检查是否有更近的邻居。
- 范围搜索:从根节点开始,递归地检查每个节点是否在搜索范围内,如果在范围内则加入结果集。
4、PCL(Point Cloud Library)中的Kd树
PCL是一个强大的点云处理库,提供了Kd树的实现,主要用于点云数据的最近邻搜索、范围搜索等操作。
5、PCL中Kd树的代码实现
- 以下是一个使用PCL库实现Kd树并进行最近邻搜索的
C++示例代码kdtree_demo.cpp:
#include <pcl/point_cloud.h>
#include <pcl/kdtree/kdtree_flann.h>
#include <iostream>
int main()
{
// 创建一个点云对象
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
// 填充点云数据
cloud->width = 1000;
cloud->height = 1;
cloud->points.resize(cloud->width * cloud->height);
for (size_t i = 0; i < cloud->points.size(); ++i)
{
cloud->points[i].x = 1024.0f * rand() / (RAND_MAX + 1.0f);
cloud->points[i].y = 1024.0f * rand() / (RAND_MAX + 1.0f);
cloud->points[i].z = 1024.0f * rand() / (RAND_MAX + 1.0f);
}
// 创建KdTree对象
pcl::KdTreeFLANN<pcl::PointXYZ> kdtree;
// 设置输入点云
kdtree.setInputCloud(cloud);
// 创建一个随机查询点
pcl::PointXYZ searchPoint;
searchPoint.x = 1024.0f * rand() / (RAND_MAX + 1.0f);
searchPoint.y = 1024.0f * rand() / (RAND_MAX + 1.0f);
searchPoint.z = 1024.0f * rand() / (RAND_MAX + 1.0f);
// K最近邻搜索
int K = 10;
std::vector<int> pointIdxNKNSearch(K);
std::vector<float> pointNKNSquaredDistance(K);
std::cout << "K nearest neighbor search at (" << searchPoint.x
<< " " << searchPoint.y
<< " " << searchPoint.z
<< ") with K=" << K << std::endl;
if (kdtree.nearestKSearch(searchPoint, K, pointIdxNKNSearch, pointNKNSquaredDistance) > 0)
{
for (size_t i = 0; i < pointIdxNKNSearch.size(); ++i)
std::cout << " " << cloud->points[pointIdxNKNSearch[i]].x
<< " " << cloud->points[pointIdxNKNSearch[i]].y
<< " " << cloud->points[pointIdxNKNSearch[i]].z
<< " (squared distance: " << pointNKNSquaredDistance[i] << ")" << std::endl;
}
// 半径搜索
float radius = 256.0f * rand() / (RAND_MAX + 1.0f);
std::vector<int> pointIdxRadiusSearch;
std::vector<float> pointRadiusSquaredDistance;
std::cout << "Neighbors within radius search at (" << searchPoint.x
<< " " << searchPoint.y
<< " " << searchPoint.z
<< ") with radius=" << radius << std::endl;
if (kdtree.radiusSearch(searchPoint, radius, pointIdxRadiusSearch, pointRadiusSquaredDistance) > 0)
{
for (size_t i = 0; i < pointIdxRadiusSearch.size(); ++i)
std::cout << " " << cloud->points[pointIdxRadiusSearch[i]].x
<< " " << cloud->points[pointIdxRadiusSearch[i]].y
<< " " << cloud->points[pointIdxRadiusSearch[i]].z
<< " (squared distance: " << pointRadiusSquaredDistance[i] << ")" << std::endl;
}
return 0;
}
CMakeLists.txt:
cmake_minimum_required(VERSION 3.10 FATAL_ERROR)
project(kdtree_demo)
find_package(PCL 1.14 REQUIRED)
include_directories(${PCL_INCLUDE_DIRS})
link_directories(${PCL_LIBRARY_DIRS})
add_definitions(${PCL_DEFINITIONS})
add_executable (kdtree_demo kdtree_demo.cpp)
target_link_libraries (kdtree_demo ${PCL_LIBRARIES})
- 运行结果
$ mkdir build && cd build
$ cmake ..
$ make
[ 50%] Building CXX object CMakeFiles/kdtree_demo.dir/kdtree_demo.cpp.o
[100%] Linking CXX executable kdtree_demo
[100%] Built target kdtree_demo
$ ./kdtree_demo
K nearest neighbor search at (60.1689 14.2143 637.145) with K=10
60.1326 76.0427 656.145 (squared distance: 4183.76)
99.8589 2.16376 580.404 (squared distance: 4939.98)
33.6821 65.0861 702.179 (squared distance: 7518.98)
38.5616 46.545 729.416 (squared distance: 10026.1)
125.016 39.1832 527.294 (squared distance: 16895.7)
24.4359 5.19803 498.948 (squared distance: 20456.4)
51.4696 21.3647 490.962 (squared distance: 21496.2)
32.3649 114.848 744.73 (squared distance: 22475)
3.54107 65.8858 507.298 (squared distance: 22736.9)
182.712 110.098 671.656 (squared distance: 25401.5)
Neighbors within radius search at (60.1689 14.2143 637.145) with radius=10.0186
6、代码说明
- 点云生成:代码首先生成一个包含1000个随机点的点云。
- Kd树构建:使用
pcl::KdTreeFLANN类创建Kd树,并将点云数据输入到Kd树中。 - 最近邻搜索:使用
nearestKSearch方法进行K最近邻搜索,找到距离查询点最近的K个点。 - 半径搜索:使用
radiusSearch方法进行半径搜索,找到距离查询点在一定半径内的所有点。
7、总结
Kd树是一种高效的数据结构,特别适用于高维空间中的搜索操作。PCL库提供了Kd树的实现,可以方便地进行点云数据的最近邻搜索和范围搜索。通过上述代码示例,可以快速上手使用PCL中的Kd树进行点云处理。
949

被折叠的 条评论
为什么被折叠?



