待求解的行列式
∣ A n × n ∣ = ∣ 1 cos θ 1 cos 2 θ 1 ⋯ cos ( n − 1 ) θ 1 1 cos θ 2 cos 2 θ 2 ⋯ cos ( n − 1 ) θ 2 1 cos θ 3 cos 2 θ 3 ⋯ cos ( n − 1 ) θ 3 ⋮ ⋮ ⋮ ⋱ ⋮ 1 cos θ n cos 2 θ n ⋯ cos ( n − 1 ) θ n ∣ \left| { {A}_{n\times n}} \right|=\left| \begin{matrix} 1 & \cos { {\theta }_{1}} & \cos 2{ {\theta }_{1}} & \cdots & \cos \left( n-1 \right){ {\theta }_{1}} \\ 1 & \cos { {\theta }_{2}} & \cos 2{ {\theta }_{2}} & \cdots & \cos \left( n-1 \right){ {\theta }_{2}} \\ 1 & \cos { {\theta }_{3}} & \cos 2{ {\theta }_{3}} & \cdots & \cos \left( n-1 \right){ {\theta }_{3}} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \cos { {\theta }_{n}} & \cos 2{ {\theta }_{n}} & \cdots & \cos \left( n-1 \right){ {\theta }_{n}} \\ \end{matrix} \right| ∣An×n∣=∣∣∣∣∣∣∣∣∣∣∣111⋮1cosθ1cosθ2cosθ3⋮cosθncos2θ1cos2θ2cos2θ3⋮cos2θn⋯⋯⋯⋱⋯cos(n−1)θ1cos(n−1)θ2cos(n−1)θ3⋮cos(n−1)θn∣∣∣∣∣∣∣∣∣∣∣
求解过程
直接在 ∣ A ∣ \left| A \right| ∣A∣上运用Laplace定理展开计算是不现实的,为了方便计算,我们寻求 A A A中不同行或者不同列之间是否存在某种线性关系,以便对原行列式进行化简。
由欧拉公式 e i θ = cos θ + i sin θ {
{e}^{i\theta }}=\cos \theta +i\sin \theta eiθ=cosθ+isinθ可推导出De Moivre公式
cos k θ + i sin k θ = e i ( k θ ) = ( e i θ ) k = ( cos θ + i sin θ ) k , k = 1 , 2 , ⋯ . (1) \cos k\theta +i\sin k\theta ={
{e}^{i\left( k\theta \right)}}={
{\left( {
{e}^{i\theta }} \right)}^{k}}={
{\left( \cos \theta +i\sin \theta \right)}^{k}},\text{ }k=1,2,\cdots . \tag{1} coskθ+isinkθ=ei(kθ)=(eiθ)k=(cosθ+isinθ)k, k=1,2,⋯.(1)
对式(1)的右边进行二项式展开,得到
j j ( cos θ + i sin θ ) k = ∑ p = 0 k C k p cos k − p θ ⋅ ( i sin θ ) p = ( ∑ 0 ≤ 4 q ≤ k C k 4 q cos k − 4 q θ ⋅ sin 4 q θ − ∑ 0 ≤ 4 q + 2 ≤ k C k 4 q + 2 cos k − ( 4 q + 2 ) θ ⋅ sin 4 q + 2 θ ) + i ( ∑ 0 ≤ 4 q + 1 ≤ k C k 4 q + 1 cos k − ( 4 q + 1 ) θ ⋅ sin 4 q + 1 θ − ∑ 0 ≤ 4 q + 3 ≤ k C k 4 q + 3 cos k − ( 4 q + 3 ) θ ⋅ sin 4 q + 3 θ ) . (2) \begin{aligned} & \phantom{jj}{
{\left( \cos \theta +i\sin \theta \right)}^{k}} \\ & =\sum\limits_{p=0}^{k}{C_{k}^{p}{
{\cos }^{k-p}}\theta \centerdot {
{\left( i\sin \theta \right)}^{p}}} \\ & =\left( \sum\limits_{0\le 4q\le k}^{
{}}{C_{k}^{4q}{
{\cos }^{k-4q}}\theta \centerdot {
{\sin }^{4q}}\theta }-\sum\limits_{0\le 4q+2\le k}^{
{}}{C_{k}^{4q+2}{
{\cos }^{k-\left( 4q+2 \right)}}\theta \centerdot {
{\sin }^{4q+2}}\theta } \right) \\ & +i\left( \sum\limits_{0\le 4q+1\le k}^{
{}}{C_{k}^{4q+1}{
{\cos }^{k-\left( 4q+1 \right)}}\theta \centerdot {
{\sin }^{4q+1}}\theta }-\sum\limits_{0\le 4q+3\le k}^{
{}}{C_{k}^{4q+3}{
{\cos }^{k-\left( 4q+3 \right)}}\theta \centerdot {
{\sin }^{4q+3}}\theta } \right). \\ \tag{2} \end{aligned} jj(cosθ+isinθ)k=p=0∑kCkpcosk−pθ⋅(isinθ)p=⎝⎛0≤4q≤k∑Ck4qcosk−4qθ⋅sin4qθ−0≤4q+2≤k∑Ck4q+2cosk−(4q+2)θ⋅sin4q+2θ⎠⎞+i⎝⎛0≤4q+1≤k∑Ck4q+1cosk−(4q+1)θ⋅sin4q+1θ−0≤4q+3≤k∑Ck4q+3cosk−(4q+3)θ⋅sin4q+3θ⎠⎞.(2)
对比式(1)等号左边和式(2)等号右边的实部和虚部,可得
cos k θ = ∑ 0 ≤ 4 q ≤ k C k 4 q cos k − 4 q θ ⋅ sin 4 q θ − ∑ 0 ≤ 4 q + 2 ≤ k C k 4 q + 2 cos k − ( 4 q + 2 ) θ ⋅ sin 4 q + 2 θ = ∑ 0 ≤ 4 q ≤ k C k 4 q cos k − 4 q θ ⋅ ( 1 − cos 2 θ ) 2 q − ∑ 0 ≤ 4 q + 2 ≤ k C k 4 q + 2 cos k − ( 4 q + 2 ) θ ⋅ ( 1 − cos 2 θ ) 2 q + 1 = ∑ p = 0 k d k , p cos p θ , (3) \begin{aligned} & \cos k\theta =\sum\limits_{0\le 4q\le k}^{
{}}{C_{k}^{4q}{
{\cos }^{k-4q}}\theta \centerdot {
{\sin }^{4q}}\theta }-\sum\limits_{0\le 4q+2\le k}^{
{}}{C_{k}^{4q+2}{
{\cos }^{k-\left( 4q+2 \right)}}\theta \centerdot {
{\sin }^{4q+2}}\theta } \\ & =\sum\limits_{0\le 4q\le k}^{
{}}{C_{k}^{4q}{
{\cos }^{k-4q}}\theta \centerdot {
{\left( 1-{
{\cos }^{2}}\theta \right)}^{2q}}}-\sum\limits_{0\le 4q+2\le k}^{
{}}{C_{k}^{4q+2}{
{\cos }^{k-\left( 4q+2 \right)}}\theta \centerdot {
{\left( 1-{
{\cos }^{2}}\theta \right)}^{2q+1}}} \\ & =\sum\limits_{p=0}^{k}{
{
{d}_{k,p}}{
{\cos }^{p}}\theta }, \\ \tag{3} \end{aligned}