H a c k e r r a n k Hacker\ rank Hacker rank原题付费获得可还行
考虑每一个点的贡献
枚举度数,其他所有点之间随便练
a
n
s
=
2
(
n
−
1
)
∗
(
n
−
2
)
2
∗
∑
i
=
0
n
−
1
(
n
−
1
i
)
i
k
ans=2^{\frac{(n-1)*(n-2)}{2}}*\sum_{i=0}^{n-1}{n-1\choose i}i^k
ans=22(n−1)∗(n−2)∗∑i=0n−1(in−1)ik
由于
n
n
n个点都相同,所以最后乘一个
n
n
n
为了好写令
n
=
n
−
1
n=n-1
n=n−1
a
n
s
=
(
n
+
1
)
∗
2
n
∗
(
n
−
1
)
2
∗
∑
i
=
0
n
(
n
i
)
i
k
ans=(n+1)*2^{\frac{n*(n-1)}{2}}*\sum_{i=0}^{n}{n\choose i}i^k
ans=(n+1)∗22n∗(n−1)∗∑i=0n(in)ik
我们只考虑计算
A
n
s
=
∑
i
=
0
n
(
n
i
)
i
k
Ans=\sum_{i=0}^n{n\choose i}i^k
Ans=∑i=0n(in)ik
由于 i k = ∑ j = 0 i ( 这 里 取 i , k 都 是 一 样 的 ) S 2 ( k , j ) ( i j ) j ! i^k=\sum_{j=0}^{i(这里取i,k都是一样的)}S_2(k,j){i\choose j}j! ik=∑j=0i(这里取i,k都是一样的)S2(k,j)(ji)j!
A n s = ∑ i = 0 n ( n i ) ∑ j = 0 i S 2 ( k , j ) ( i j ) j ! Ans=\sum_{i=0}^{n}{n\choose i}\sum_{j=0}^iS_2(k,j){i\choose j}j! Ans=∑i=0n(in)∑j=0iS2(k,j)(ji)j!
= ∑ j = 0 k S 2 ( k , j ) ∑ i = j n ( n i ) ( i j ) j ! =\sum_{j=0}^k S_2(k,j)\sum_{i=j}^{n}{n\choose i}{i\choose j}j! =∑j=0kS2(k,j)∑i=jn(in)(ji)j!
由于 ( n i ) ( i j ) j ! = n ! i ! ( n − i ) ! i ! j ! ( i − j ) ! j ! = n ! ( n − i ! ) ( i − j ) ! = n j ‾ ∗ ( n − j ) ! ( n − i ) ! ( i − j ) ! = n j ‾ ( n − j i − j ) {n\choose i}{i\choose j}j! =\frac{n!}{i!(n-i)!}\frac{i!}{j!(i-j)!}j!=\frac{n!}{(n-i!)(i-j)!}\\ = \frac{n^{\underline j}*(n-j)!}{(n-i)!(i-j)!}=n^{\underline j}{n-j\choose i-j} (in)(ji)j!=i!(n−i)!n!j!(i−j)!i!j!=(n−i!)(i−j)!n!=(n−i)!(i−j)!nj∗(n−j)!=nj(i−jn−j)
A n s = ∑ j = 0 k S 2 ( k , j ) n j ‾ ∑ i = j n ( n − j i − j ) Ans=\sum_{j=0}^k S_2(k,j)n^{\underline j}\sum_{i=j}^{n}{n-j\choose i-j} Ans=∑j=0kS2(k,j)nj∑i=jn(i−jn−j)
= ∑ j = 0 k S 2 ( k , j ) n j ‾ ∑ i = 0 n − j ( n − j i ) =\sum_{j=0}^k S_2(k,j)n^{\underline j}\sum_{i=0}^{n-j}{n-j\choose i} =∑j=0kS2(k,j)nj∑i=0n−j(in−j)
= ∑ j = 0 k S 2 ( k , j ) n j ‾ 2 n − j =\sum_{j=0}^k S_2(k,j)n^{\underline j}2^{n-j} =∑j=0kS2(k,j)nj2n−j
利用 N T T NTT NTT求出 S 2 ( k ) S_2(k) S2(k)就完了
#include<bits/stdc++.h>
using namespace std;
#define gc getchar
inline int read(){
char ch=gc();
int res=0,f=1;
while(!isdigit(ch))f^=ch=='-',ch=gc();
while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
return f?res:-res;
}
#define re register
#define pb push_back
#define cs const
#define pii pair<int,int>
#define fi first
#define se second
#define ll long long
const int mod=998244353,G=3;
inline int add(int a,int b){return (a+=b)>=mod?a-mod:a;}
inline void Add(int &a,int b){(a+=b)>=mod?(a-=mod):0;}
inline int dec(int a,int b){return (a-=b)<0?a+mod:a;}
inline void Dec(int &a,int b){(a-=b)<0?(a+=mod):0;}
inline int mul(int a,int b){return 1ll*a*b>=mod?1ll*a*b%mod:a*b;}
inline void Mul(int &a,int b){a=mul(a,b);}
inline int ksm(int a,int b,int res=1){
for(;b;b>>=1,a=mul(a,a))(b&1)&&(res=mul(res,a));return res;
}
inline int Inv(int x){
return ksm(x,mod-2);
}
const int N=200005;
int fac[N],ifac[N];
inline void init(){
fac[0]=ifac[0]=1;
for(int i=1;i<N;i++)fac[i]=mul(fac[i-1],i);
ifac[N-1]=Inv(fac[N-1]);
for(int i=N-2;i;i--)ifac[i]=mul(ifac[i+1],i+1);
}
inline int C(int n,int m){
if(n<m)return 0;
return mul(fac[n],mul(ifac[m],ifac[n-m]));
}
#define poly vector<int>
int rev[N<<2];
inline void init_rev(int lim){
for(int i=0;i<lim;i++)rev[i]=(rev[i>>1]>>1)|((i&1)*(lim>>1));
}
inline void ntt(poly &f,int lim,int kd){
for(int i=0;i<lim;i++)if(i>rev[i])swap(f[i],f[rev[i]]);
int bas=kd==-1?G:((mod+1)/G);
for(int mid=1,a0,a1;mid<lim;mid<<=1){
int wn=ksm(bas,(mod-1)/(mid<<1));
for(int i=0;i<lim;i+=(mid<<1)){
int w=1;
for(int j=0;j<mid;j++,Mul(w,wn)){
a0=f[i+j],a1=mul(f[i+j+mid],w);
f[i+j]=add(a0,a1),f[i+j+mid]=dec(a0,a1);
}
}
}
if(kd==-1)for(int i=0,inv=Inv(lim);i<lim;i++)Mul(f[i],inv);
}
inline poly operator *(poly &a,poly &b){
int deg=a.size()+b.size()-1,lim=1;
while(lim<deg)lim<<=1;
init_rev(lim);
a.resize(lim),b.resize(lim);
ntt(a,lim,1),ntt(b,lim,1);
for(int i=0;i<lim;i++)Mul(a[i],b[i]);
ntt(a,lim,-1),a.resize(deg);
return a;
}
int n,k;
poly f,g;
int main(){
#ifdef Stargazer
freopen("lx.cpp","r",stdin);
#endif
n=read()-1,k=read();
init();
for(int i=0;i<=k;i++)f.pb((i&1)?mod-ifac[i]:ifac[i]);
for(int i=0;i<=k;i++)g.pb(mul(ksm(i,k),ifac[i]));
poly s=f*g;
int res=0;
for(int i=0,t=1,nn=n+1,inv=Inv(2),p=ksm(2,n);i<=k;i++,Mul(t,--nn),Mul(p,inv))
Add(res,mul(s[i],mul(t,p)));
Mul(res,n+1);
Mul(res,ksm(2,1ll*n*(n-1)/2%(mod-1)));
cout<<res;
}