Fibonacci hdu 5167

本文介绍了一种算法,用于判断一个整数是否可以被分解为Fibonacci数列中数的乘积。通过递归定义Fibonacci数列,并使用深度优先搜索(DFS)算法,该算法能够有效解决这一问题。输入包括多个测试用例,每个用例包含一个待检查的整数,输出则是Yes或No,表示该整数是否满足条件。

Problem Description
Following is the recursive definition of Fibonacci sequence:
Fi=⎧⎩⎨01Fi−1+Fi−2i = 0i = 1i > 1

Now we need to check whether a number can be expressed as the product of numbers in the Fibonacci sequence.

Input
There is a number T shows there are T test cases below. (T≤100,000)
For each test case , the first line contains a integers n , which means the number need to be checked.
0≤n≤1,000,000,000

Output
For each case output “Yes” or “No”.

Sample Input

3
4
17
233

Sample Output

Yes
No
Yes

Source
BestCoder Round #28


dfs 搜索即可;

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
#include<cctype>
//#pragma GCC optimize("O3")
using namespace std;
#define maxn 1000005
#define inf 0x3f3f3f3f
#define INF 0x7fffffff
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
typedef long long  ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const int mod = 10000007;
#define Mod 20100403
#define sq(x) (x)*(x)
#define eps 1e-10
const int N = 1505;

inline int rd() {
	int x = 0;
	char c = getchar();
	bool f = false;
	while (!isdigit(c)) {
		if (c == '-') f = true;
		c = getchar();
	}
	while (isdigit(c)) {
		x = (x << 1) + (x << 3) + (c ^ 48);
		c = getchar();
	}
	return f ? -x : x;
}

ll gcd(ll a, ll b) {
	return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; }

ll cal(ll x) {
	ll ans = 0;
	while (x) {
		ans += (x % 10);
		x /= 10;
	}
	return ans;
}

ll n;
int T;
int f[50];
bool fg;
int k;
int a[50];

bool dfs(int n, int stp) {
	if (n == 1) {
		fg = true;
		return  true;
	}
	if (fg)return true;
	for (int i = stp; i < k; i++) {
		if (n%a[i] == 0) {
			if (dfs(n / a[i], i))return true;
		}
	}
	return false;
}

int main()
{
	//ios::sync_with_stdio(false);
	rdint(T);
	f[0] = 0; f[1] = 1;
	for (int i = 2; i <= 45; i++) {
		f[i] = f[i - 1] + f[i - 2];
	}
	while (T--) {
		rdllt(n); fg = false;
		ms(a); k = 0;
		if (n == 0) {
			cout << "Yes" << endl; continue;
		}
		for (int i = 3; i <= 45; i++) {
			if (n%f[i] == 0) {
				a[k] = f[i]; k++;
			}
		}
		if (dfs(n, 0))cout << "Yes" << endl;
		else cout << "No" << endl;
	}
}
### 使用多种编程语言实现输出斐波那契数列的前四项 以下是几种常见编程语言实现输出斐波那契数列前四项的方法: #### C++ 实现 在C++中可以通过简单的循环来计算并打印斐波那契数列的前几项。 ```cpp #include <iostream> using namespace std; int main() { cout << "Fibonacci数列的前4项如下:" << endl; int a = 1, b = 1; // 初始化前两项 cout << a << " " << b << " "; // 打印前两项 for (int i = 1; i <= 2; ++i) { // 计算并打印后续两项 int nextTerm = a + b; cout << nextTerm << " "; a = b; b = nextTerm; } cout << endl; return 0; } ``` 此代码片段基于引用中的逻辑[^1],简化为仅输出前四项。 --- #### Python 实现 Python 提供了一种简洁的方式来生成斐波那契数列。通过列表推导或其他方法可轻松完成任务。 ```python def fibonacci_four_terms(): terms = [1, 1] # 初始两个值 for _ in range(2): # 添加接下来的两项 terms.append(terms[-1] + terms[-2]) return terms[:4] result = fibonacci_four_terms() print("Fibonacci数列的前4项:", result) ``` 上述代码利用了动态数组的概念,类似于引用中的描述[^2],但调整为了只生成四个数值。 --- #### Java 实现 Java 中可以借助 `ArrayList` 来存储和操作斐波那契序列。 ```java import java.util.ArrayList; public class FibonacciFourTerms { public static void main(String[] args) { ArrayList<Integer> fabList = new ArrayList<>(); fabList.add(1); fabList.add(1); for (int i = 2; i < 4; i++) { fabList.add(fabList.get(i - 1) + fabList.get(i - 2)); } System.out.println("Fibonacci数列的前4项:"); for (Integer num : fabList) { System.out.print(num + " "); } } } ``` 这段代码参考了 Java 的实现方式[^5],并对范围进行了修改以便适应当前需求。 --- #### C 实现 对于更基础的语言如C,则可以直接采用数组或者变量交换的方式处理。 ```c #include <stdio.h> void print_fibonacci_first_four() { int first = 1, second = 1; printf("%d %d ", first, second); // 输出前两项目 for(int i = 3; i <= 4; i++) { // 继续计算剩余部分直到第四项为止 int third = first + second; printf("%d ", third); first = second; second = third; } } int main(){ print_fibonacci_first_four(); return 0; } ``` 该版本遵循传统迭代模式构建结果集,并且保持简单明了结构设计思路来自其他例子[^3]^。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值