【拓扑排序】AGC001FWide Swap

这道题目的关键是理解如何通过逆序操作得到字典序最小的序列。分析发现,要使序列字典序最小,需要在变换过程中保持1、2等较小元素靠前。通过观察交换条件,可以将问题转化为图的拓扑排序。为避免超时,只需建立关键边的连接。最后,按拓扑序输出即可解题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分析:

额,这是一道相当恶心的结论题。
对于给出的序列pp,可以求得其的逆q(pqi=i)

并且,要使得pp的序列字典序尽可能小,即要求q中1的位置尽量靠前,其次2的位置尽量靠前。。。(有些题解认为p字典序尽量小=q字典序尽量小,但我怎么都觉得不对,但至少官方题解的说法是我这样的。)

观察题目中对p的要求,再转移到q上就等价于:
在q中选择相邻的两个元素,且两元素只差不小于k,就可以交换这两个。

这样一来就有个很显然的性质了:对于任意一对i,ji,j若满足|qjqi|<k|qj−qi|<k则其相对位置不可能改变。

这样一来,我们可以构造一个图,将限制条件转化为边,然后按拓扑序输出即可。

但是就这样建图会超时n2n2条边。所以可以简化一下,对q序列的位置ii而言,只需要连上满足j>iqiqj<k(qj<qi)qjqi<k(qi<qj)qi−qj<k(qj<qi)或qj−qi<k(qi<qj)的最小的jj边各一条即可。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<set>
#include<vector>
#include<queue>
#define SF scanf
#define PF printf
#define MAXN 500010
using namespace std;
int p[MAXN],q[MAXN];
set<int> pre,bac;
vector<int> a[MAXN];
priority_queue<int> que;
int n,k,pri[MAXN];
int vis[MAXN];
int main(){
    SF("%d%d",&n,&k);
    for(int i=1;i<=n;i++){
        SF("%d",&p[i]);
        q[p[i]]=i;
    }
    for(int i=1;i<=k;i++)
        bac.insert(p[i]);
    set<int>::iterator b,g;
    for(int i=1;i<=n;i++){
        b=bac.upper_bound(p[i]);
        g=pre.upper_bound(p[i]);
        if(b!=bac.end()){
            //PF("{%d %d}\n",q[*b],i);
            a[q[*b]].push_back(i);
            vis[i]++;
        }
        if(g!=pre.end()){
            //PF("[%d %d]\n",q[*g],i);
            a[q[*g]].push_back(i);
            vis[i]++;
        }
        pre.insert(p[i]);
        if(i-k+1>0)
            pre.erase(p[i-k+1]);
        if(i+k<=n)
            bac.insert(p[i+k]);
        bac.erase(p[i]);
    }
    for(int i=1;i<=n;i++)
        if(vis[i]==0)
            que.push(i);
    int tot=0;
    while(!que.empty()){
        int x=que.top();
        que.pop();
        pri[++tot]=x;
        //PF("[%d]",x);
        for(int i=0;i<a[x].size();i++){
            vis[a[x][i]]--;
            if(vis[a[x][i]]==0)
                que.push(a[x][i]);
        }
    }
    for(int i=1;i<=n;i++)
        q[pri[i]]=n-i+1;
    for(int i=1;i<=n;i++)
        PF("%d\n",q[i]);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值