22、利用熵方法学习所有可能的策略

利用熵方法学习所有可能的策略

1. 引言

深度强化学习(RL)是处理和近似复杂观测的标准工具,能产生复杂行为。不过,许多深度RL方法优化的是确定性策略,然而,学习随机策略或概率性行为往往能提高鲁棒性,更好地应对随机环境。

2. 什么是熵

香农熵(以下简称熵)是衡量随机变量所含信息量的指标,信息通过编码所有可能状态所需的比特数来计算。公式如下:
[
\mathcal{H}(X) \triangleq \mathbb{E}[I(X)] = -\sum_{x \in X} p(x) \log_b p(x)
]
其中,(X \triangleq {x_0, x_1, \cdots, x_{n - 1}}) 是随机变量,(\mathcal{H}) 是熵,(I) 是信息内容,(b) 是对数的底数(常用的底数有 (b \triangleq 2) 表示比特,(b \triangleq 10) 表示班,(b \triangleq e) 表示奈特,比特是最常用的底数)。

例如,一枚硬币有两种状态(假设不立着),可用 0 和 1 编码,所以硬币的熵(以比特为单位)是 1。一个骰子有六种可能状态,需要三个比特来描述(实际值是 2.5849…)。

最优控制的概率解是随机策略。为了准确表示动作 - 概率分布,必须对足够多的状态和动作进行采样。可以像 UCB 那样测量访问过的状态和动作数量,但这与策略没有直接关联,UCB 是一种探索策略,而非策略的一部分。可以使用熵等代理指标来衡量策略的分布情况,并将其作为惩罚项纳入目标函数。

3. 最大熵强化学习

最大化策略的熵能迫使智能体访问所有

基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)内容概要:本文围绕“基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究”展开,提出了一种结合数据驱动方法与Koopman算子理论的递归神经网络(RNN)模型线性化方法,旨在提升纳米定位系统的预测控制精度与动态响应能力。研究通过构建数据驱动的线性化模型,克服了传统非线性系统建模复杂、计算开销大的问题,并在Matlab平台上实现了完整的算法仿真与验证,展示了该方法在高精度定位控制中的有效性与实用性。; 适合人群:具备一定自动化、控制理论或机器学习背景的科研人员与工程技术人员,尤其是从事精密定位、智能控制、非线性系统建模与预测控制相关领域的研究生与研究人员。; 使用场景及目标:①应用于纳米级精密定位系统(如原子力显微镜、半导体制造设备)中的高性能预测控制;②为复杂非线性系统的数据驱动建模与线性化提供新思路;③结合深度学习与经典控制理论,推动智能控制算法的实际落地。; 阅读建议:建议读者结合Matlab代码实现部分,深入理解Koopman算子与RNN结合的建模范式,重点关注数据预处理、模型训练与控制系统集成等关键环节,并可通过替换实际系统数据进行迁移验证,以掌握该方法的核心思想与工程应用技巧。
基于粒子群算法优化Kmeans聚类的居民用电行为分析研究(Matlb代码实现)内容概要:本文围绕基于粒子群算法(PSO)优化Kmeans聚类的居民用电行为分析展开研究,提出了一种结合智能优化算法与传统聚类方法的技术路径。通过使用粒子群算法优化Kmeans聚类的初始聚类中心,有效克服了传统Kmeans算法易陷入局部最优、对初始值敏感的问题,提升了聚类的稳定性和准确性。研究利用Matlab实现了该算法,并应用于居民用电数据的行为模式识别与分类,有助于精细化电力需求管理、用户画像构建及个性化用电服务设计。文档还提及相关应用场景如负荷预测、电力系统优化等,并提供了配套代码资源。; 适合人群:具备一定Matlab编程基础,从事电力系统、智能优化算法、数据分析等相关领域的研究人员或工程技术人员,尤其适合研究生及科研人员。; 使用场景及目标:①用于居民用电行为的高效聚类分析,挖掘典型用电模式;②提升Kmeans聚类算法的性能,避免局部最优问题;③为电力公司开展需求响应、负荷预测和用户分群管理提供技术支持;④作为智能优化算法与机器学习结合应用的教学与科研案例。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,深入理解PSO优化Kmeans的核心机制,关注参数设置对聚类效果的影响,并尝试将其应用于其他相似的数据聚类问题中,以加深理解和拓展应用能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值