9、量子密码学:原理、应用与未来趋势

量子密码学:原理、应用与未来趋势

1. 引言

信息保护自古以来就是人类生活的重要组成部分。在计算机社会中,信息安全对人类愈发重要,新技术也层出不穷。密码学是将信息从可读状态转换为无意义状态,或进行相反转换的技术,能有效保护信息的传输和存储。现代密码学自二战后随着电子学和计算机科学的快速发展而迅速崛起,主要分为对称密钥密码学和公钥密码学。其中,一次性密码本(OTP)被证明无论计算能力多强大都无法破解,但生成和分发与明文相同大小的真正随机密钥流是一项严格要求。

量子密码学为合法用户之间的密钥交换提供了一种安全的方法,可与OTP结合实现安全通信会话。其概念最早由Wiesner在20世纪60年代提出,而真正的发展始于1984年Bennett和Brassard提出的第一个量子密钥分发(QKD)协议。QKD是量子密码学的一个主要方面,其安全性由量子力学而非计算复杂性保证,能检测非法拦截密钥信息的行为。

2. 量子密码学研究现状
  • QKD实验与编码方式 :1989年,Bennett和Smolin进行了第一次QKD实验,开启了现实生活中QKD的大门。根据QKD协议的实现方案,有离散变量、连续变量和分布式相位参考编码;根据量子信息的物理载体,有偏振编码、相位编码、频率编码、幅度编码等。自由空间QKD和光纤QKD可作为基于光子的QKD的量子通道,应根据通道特性、性能要求、操作条件等选择实现方案。
  • 光纤与自由空间QKD :光纤是最广泛使用的量子通道,可应用偏振和相位编码QKD方案。但由于光纤中的固有双折射效应,偏振编码QKD方案中光子的偏振态易受干扰,因此相位编码QK
MATLAB主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性内容概要:本文主要介绍了一种在MATLAB环境下实现的主动噪声和振动控制算法,该算法针对较大的次级路径变化具有较强的鲁棒性。文中详细阐述了算法的设计原理实现方法,重点解决了传统控制系统中因次级路径动态变化导致性能下降的问题。通过引入自适应机制和鲁棒控制策略,提升了系统在复杂环境下的稳定性和控制精度,适用于需要高精度噪声振动抑制的实际工程场景。此外,文档还列举了多个MATLAB仿真实例及相关科研技术服务内容,涵盖信号处理、智能优化、机器学习等多个交叉领域。; 适合人群:具备一定MATLAB编程基础和控制系统理论知识的科研人员及工程技术人员,尤其适合从事噪声振动控制、信号处理、自动化等相关领域的研究生和工程师。; 使用场景及目标:①应用于汽车、航空航天、精密仪器等对噪声和振动敏感的工业领域;②用于提升现有主动控制系统对参数变化的适应能力;③为相关科研项目提供算法验证仿真平台支持; 阅读建议:建议读者结合提供的MATLAB代码进行仿真实验,深入理解算法在不同次级路径条件下的响应特性,并可通过调整控制参数进一步探究其鲁棒性边界。同时可参考文档中列出的相关技术案例拓展应用场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值