多元函数的高阶微分公式 与 Taylor公式

本文详细探讨了多元函数的高阶微分公式及其证明过程,通过数学归纳法阐述了Taylor公式,并提供了证明。内容涵盖多元函数的k阶可微性条件,以及Taylor展开式的应用,证明了当函数的偏导数连续时,Taylor公式对于函数增量的表达。同时,推论指出函数的微分恒为零意味着函数是常量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

设:
m,nN,m,n1,
Dj=xj
Djn=(xj)n=nxnj
DimDjn=(xi)m(xj)n=m+nxmixnj

高阶微分公式

若: y=f(x):RnR,k 阶可微, n,kN,n,k1,
则:

kN,k1,dky=j=1n(dxjDj)ky

证明:

k=1 时显然成立。
k 时成立,
(nj=1xj)k=1n1,,nknkj=1xnj 可得:

dk+1y=d(dky)=d{[nj=1(dxjDj)]ky}=

=d[1n1,,nknkj=1(dxnjDnj)y]

=1n1,,nkn(kj=1dxnj)d(kj=1Dnj)y

=1n1,,nkn(kj=1dxnj)[1nk+1ndxnk+1Dnk+1(kj=1Dnj)y]

=1n1,,nkn(kj=1dxnj)(1nk+1ndxnk+1Dnk+1kj=1Dnjy)

=1n1,,nk+1n(kj=1dxnj)(dxnk+1Dnk+1kj=1Dnjy)

=1n1,,nk+1n(k+1j=1dxnj)(k+1j=1Dnjy)

=1n1,,nk+1nk+1j=1(dxnjDnj)y

=[nj=1(dxjDj)]k+1y

Taylor公式

f(x1,,xn) 在点 x 的邻域 U 上有 k+1 阶连续偏导数, kN,k1, 则: x=x+ΔxU,θ(0,1),
Δy=ki=11i![nj=1(ΔxjDj)]if(x)+1(k+1)![nj=1(ΔxjDj)]k+1f(x+θΔx)

证明:

φ(t)=f(x+tΔx),t[0,1],
则由数学归纳法(证明在后面)可得:
iN,i1, f(x) 在点 (x+tΔx) i 阶连续偏导数,则:
φ(i)(t)=[nj=1(ΔxjDj)]if(x+tΔx),(*)
于是 φ(t) [0,1] k 阶连续偏导数, 在 (0,1) k+1 阶导数,
由 Taylor 公式, θ(0,1),
Δy=f(x+Δx)f(x)
=φ(1)φ(0)=ki=11i!φ(i)(0)+1(k+1)!φ(k+1)(θ)
ki=11i![nj=1(ΔxjDj)]if(x)+1(k+1)![nj=1(ΔxjDj)]k+1f(x+θΔx)

(*) 的证明:

多元复合函数的求导法则 i=1 时显然成立。
i=k 时成立,则 i=k+1 时:
(nj=1xj)k=1n1,,nknkj=1xnj 可得:

φ(k+1)(t)=ddt(φ(k)(t))

=ddt[nj=1(ΔxjDj)]kf(x+tΔx)

=ddt[1n1,,nknkj=1(ΔxnjDnj)f(x+tΔx)]

=1n1,,nknddt[kj=1(ΔxnjDnj)f(x+tΔx)]

=1n1,,nknddt[(kj=1Δxnj)(kj=1Dnj)f(x+tΔx)]

=1n1,,nkn(kj=1Δxnj)ddt[kj=1Dnjf(x+tΔx)]

=1n1,,nkn(kj=1Δxnj)1nk+1n(Δxnk+1Dnk+1)[kj=1Dnjf(x+tΔx)]

=1n1,,nk+1n(kj=1Δxnj)Δxnk+1Dnk+1kj=1Dnjf(x+tΔx)

=1n1,,nk+1n(k+1j=1Δxnj)(k+1j=1Dnj)f(x+tΔx)

=1n1,,nk+1nk+1j=1(ΔxnjDnj)f(x+tΔx)

=[nj=1(ΔxjDj)]k+1f(x+tΔx)

推论

df(x)0f(x) 是常量。

证明:

1) : df(x)0xjf(x)=0,jN,1jn,
由Taylor公式,
Δy=[nj=1(ΔxjDj)]f(x+θΔx)
=nj=1Δxjxjf(x+θΔx)
=0
f(x) 是常量。
2) : f(x) 是常量 df(x)0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值