设:
m,n∈N,m,n≥1,
Dj=∂∂xj
Djn=(∂∂xj)n=∂n∂xnj
DimDjn=(∂∂xi)m(∂∂xj)n=∂m+n∂xmi∂xnj
高阶微分公式
若:
y=f(x):Rn→R,k
阶可微,
n,k∈N,n,k≥1,
则:
证明:
k=1
时显然成立。
设
k
时成立,
由
dk+1y=d(dky)=d{[∑nj=1(dxjDj)]ky}=
=d[∑1≤n1,⋯,nk≤n∏kj=1(dxnjDnj)y]
=∑1≤n1,⋯,nk≤n(∏kj=1dxnj)d(∏kj=1Dnj)y
=∑1≤n1,⋯,nk≤n(∏kj=1dxnj)[∑1≤nk+1≤ndxnk+1Dnk+1(∏kj=1Dnj)y]
=∑1≤n1,⋯,nk≤n(∏kj=1dxnj)(∑1≤nk+1≤ndxnk+1Dnk+1∏kj=1Dnjy)
=∑1≤n1,⋯,nk+1≤n(∏kj=1dxnj)(dxnk+1Dnk+1∏kj=1Dnjy)
=∑1≤n1,⋯,nk+1≤n(∏k+1j=1dxnj)(∏k+1j=1Dnjy)
=∑1≤n1,⋯,nk+1≤n∏k+1j=1(dxnjDnj)y
=[∑nj=1(dxjDj)]k+1y
Taylor公式
设
f(x1,⋯,xn)
在点
x
的邻域
U
上有
Δy=∑ki=11i![∑nj=1(ΔxjDj)]if(x)+1(k+1)![∑nj=1(ΔxjDj)]k+1f(x+θΔx)
证明:
令
φ(t)=f(x+tΔx),t∈[0,1],
则由数学归纳法(证明在后面)可得:
∀i∈N,i≥1,
若
f(x)
在点
(x+tΔx)
有
i
阶连续偏导数,则:
于是
φ(t)
在
[0,1]
有
k
阶连续偏导数, 在
由 Taylor 公式,
∃θ∈(0,1),
Δy=f(x+Δx)−f(x)
=φ(1)−φ(0)=∑ki=11i!⋅φ(i)(0)+1(k+1)!⋅φ(k+1)(θ)
∑ki=11i![∑nj=1(ΔxjDj)]if(x)+1(k+1)![∑nj=1(ΔxjDj)]k+1f(x+θΔx)
(*) 的证明:
由多元复合函数的求导法则,
i=1
时显然成立。
设
i=k
时成立,则
i=k+1
时:
由
(∑nj=1xj)k=∑1≤n1,⋯,nk≤n∏kj=1xnj
可得:
φ(k+1)(t)=ddt(φ(k)(t))
=ddt[∑nj=1(ΔxjDj)]kf(x+tΔx)
=ddt[∑1≤n1,⋯,nk≤n∏kj=1(ΔxnjDnj)f(x+tΔx)]
=∑1≤n1,⋯,nk≤nddt[∏kj=1(ΔxnjDnj)f(x+tΔx)]
=∑1≤n1,⋯,nk≤nddt[(∏kj=1Δxnj)(∏kj=1Dnj)f(x+tΔx)]
=∑1≤n1,⋯,nk≤n(∏kj=1Δxnj)ddt[∏kj=1Dnjf(x+tΔx)]
=∑1≤n1,⋯,nk≤n(∏kj=1Δxnj)∑1≤nk+1≤n(Δxnk+1Dnk+1)[∏kj=1Dnjf(x+tΔx)]
=∑1≤n1,⋯,nk+1≤n(∏kj=1Δxnj)Δxnk+1Dnk+1∏kj=1Dnjf(x+tΔx)
=∑1≤n1,⋯,nk+1≤n(∏k+1j=1Δxnj)(∏k+1j=1Dnj)f(x+tΔx)
=∑1≤n1,⋯,nk+1≤n∏k+1j=1(ΔxnjDnj)f(x+tΔx)
=[∑nj=1(ΔxjDj)]k+1f(x+tΔx)
推论
df(x)≡0⇔f(x) 是常量。
证明:
1)
⇒
:
df(x)≡0⇒∂∂xjf(x)=0,∀j∈N,1≤j≤n,
由Taylor公式,
Δy=[∑nj=1(ΔxjDj)]f(x+θΔx)
=∑nj=1Δxj∂∂xjf(x+θΔx)
=0
⇒f(x)
是常量。
2)
⇐
:
f(x)
是常量
⇒df(x)≡0