5、中风患者下肢康复外骨骼的控制研究

中风患者下肢康复外骨骼的控制研究

1 引言

中风患者的上下肢残疾是一个复杂的根本问题,严重影响了他们的生活质量。在老年人群体中,中风是仅次于癌症和心脏病的第三大死亡原因。此外,中风还可能导致各种形式的瘫痪,造成永久性残疾。因此,中风患者的康复仍然是他们日常生活中的一个重要问题。由于中风、衰老、工伤等原因,需要康复计划的人数不断增加。这些事故通常会导致脊髓和中枢神经系统的永久性紊乱,可能导致上下肢运动功能丧失。

为了增强中风后下肢的运动能力,手动治疗方法是一种有效的途径。传统的康复技术依赖物理治疗师,他们专注于中风患者的功能任务康复和肌肉强化。然而,传统技术在协助患者进行日常康复训练时会让治疗师感到疲惫。

如今,下肢康复外骨骼(LLRE)被认为是增强中风患者运动能力的合适方法。近年来,已经设计出了各种类型的 LLRE 设备,例如 LOKMAT、BLEEX 和 ALEX。为了准确有效地跟踪人类步态轨迹,人们进行了大量工作来构建高效的动态模型并实施合适的控制方法。

LLRE 的轨迹跟踪控制问题受到了越来越多的关注,已经提出了不同的控制策略来解决这个问题,如自适应控制、uper L1 自适应控制、阻抗控制、模糊控制和滑模控制 SMC。其中,计算扭矩控制(CTC)策略在机器人和下肢康复外骨骼设备的建模和控制领域受到了研究人员和学者的显著关注。

CTC 方法的理论基于消除机器人设备连杆中的耦合效应,并将非线性系统转换为线性系统。然而,由于下肢康复外骨骼在实时运动中存在外部干扰和参数变化,准确建立 LLRE 系统的数学动态模型是一个复杂的问题。因此,在存在外部扰动和参数不确定性的情况下,对经典计算扭矩控制器(CTC)进行有效的配置和改进是控制 LLRE

【博士论文复现】【阻抗建模、验证扫频法】光伏并网逆变器扫频与稳定性分析(包含锁相环电流环)(Simulink仿真实现)内容概要:本文档是一份关于“光伏并网逆变器扫频与稳定性分析”的Simulink仿真实现资源,重点复现博士论文中的阻抗建模与扫频法验证过程,涵盖锁相环和电流环等关键控制环节。通过构建详细的逆变器模型,采用小信号扰动方法进行频域扫描,获取系统输出阻抗特性,并结合奈奎斯特稳定判据分析并网系统的稳定性,帮助深入理解光伏发电系统在弱电网条件下的动态行为与失稳机理。; 适合人群:具备电力电子、自动控制理论基础,熟悉Simulink仿真环境,从事新能源发电、微电网或电力系统稳定性研究研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握光伏并网逆变器的阻抗建模方法;②学习基于扫频法的系统稳定性分析流程;③复现高水平学术论文中的关键技术环节,支撑科研项目或学位论文工作;④为实际工程中并网逆变器的稳定性问题提供仿真分析手段。; 阅读建议:建议读者结合相关理论教材与原始论文,逐步运行并调试提供的Simulink模型,重点关注锁相环与电流控制器参数对系统阻抗特性的影响,通过改变电网强度等条件观察系统稳定性变化,深化对阻抗分析法的理解与应用能力。
本资源文件提供了一个基于51单片机的ILI9341液晶屏驱动的Proteus仿真项目。通过该项目,用户可以学习和实践如何使用51单片机驱动ILI9341液晶屏,并进行仿真测试。 项目简介 ILI9341是一款广泛应用于嵌入式系统的TFT液晶屏驱动芯片,支持240x320像素的显示分辨率。本项目通过51单片机控制ILI9341液晶屏,实现了基本的显示功能,并提供了Proteus仿真环境,方便用户进行调试和验证。 主要内容 硬件设计: 51单片机与ILI9341液晶屏的硬件连接图。 详细的引脚连接说明。 代码设计: 完整的C语言驱动代码,包括初始化、显示设置、像素绘制等功能。 代码注释详细,便于理解和修改。 仿真环境: 使用Proteus进行仿真,模拟实际硬件环境。 仿真结果与实际硬件运行效果一致,方便用户进行调试。 使用说明 硬件准备: 按照硬件设计部分的连接图,将51单片机与ILI9341液晶屏正确连接。 软件准备: 使用Keil等开发工具打开项目代码,进行编译和下载。 使用Proteus打开仿真文件,进行仿真测试。 仿真测试: 在Proteus中运行仿真,观察液晶屏的显示效果。 根据需要修改代码,重新编译并仿真,验证修改后的效果。 注意事项 本项目适用于学习和研究目的,实际应用中可能需要根据具体需求进行调整。 仿真环境与实际硬件可能存在差异,建议在实际硬件上进行最终测试。
本资源文件提供了一个基于STM32的ADC、TIM2和DMA的实现方案,用于对多个通道的交流正弦信号进行采样,并计算其有效值。该方案通过利用STM32的DMA功能减轻MCU的负担,并通过串口将采样和计算结果输出到PC机上的串口调试助手,方便用户观察和分析。 功能描述 多通道交流信号采样:利用STM32的ADC模块对多个通道的交流正弦信号进行采样。通道数目可以根据实际需求进行扩展。 有效值计算:通过对采样数据进行处理,计算出每个通道的交流信号的有效值。 DMA数据传输:为了减轻MCU的负担,采样数据通过DMA直接传输到内存中,避免了CPU的频繁中断处理。 串口输出:采样和计算结果通过串口输出到PC机上的串口调试助手,方便用户实时观察和调试。 注入通道保留:保留了注入通道的使用,以满足特定应用场景的需求。 使用说明 硬件准备: 确保STM32开发板已正确连接到电源和外部信号源。 连接串口线,确保PC机可以通过串口调试助手接收数据。 软件配置: 根据实际需求配置ADC、TIM2和DMA的参数,包括采样频率、通道数目等。 配置串口参数,确保与PC机上的串口调试助手匹配。 编译与下载: 使用STM32开发环境(如Keil、STM32CubeIDE等)编译代码,并将生成的二进制文件下载到STM32开发板中。 运行与调试: 启动STM32开发板,打开PC机上的串口调试助手,观察采样和计算结果。 根据需要调整参数,优化采样和计算效果。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值