参考:http://scikit-learn.org/stable/modules/metrics.html
The sklearn.metrics.pairwise submodule implements utilities to evaluate pairwise distances(样本对的距离) or affinity of sets of samples(样本集的相似度)。
Distance metrics are functions d(a, b) such that d(a, b) < d(a, c) if objects a and b are considered “more similar” than objects a and c.
Kernels are measures of similarity, i.e. s(a, b) > s(a, c) if objects a and b are considered “more similar” than objects a and c.
1、Cosine similarity
向量点积的L2-norm:
if
and
are row vectors, their cosine similarity

scikit-learn的metrics.pairwise模块提供了计算样本对距离和相似度的功能。包括Cosine相似性、线性核、多项式核、Sigmoid核、高斯RBF核和卡方核等。这些核函数常用于机器学习中的相似性判断,如非线性SVM。例如,高斯RBF核(Gaussian kernel)是通过计算欧氏距离的指数衰减来衡量相似性。
最低0.47元/天 解锁文章
1211

被折叠的 条评论
为什么被折叠?



