http://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html
<strong>1、使用“Pipeline”统一vectorizer => transformer => classifier</strong>
from sklearn.pipeline import Pipeline
text_clf = Pipeline([('vect', CountVectorizer()),
... ('tfidf', TfidfTransformer()),
... ('clf', MultinomialNB()),
... ])
text_clf = text_clf.fit(rawData.data, rawData.target)
predicted = text_clf.predict(docs_new)
<strong>#注意,这里是未经任何处理的原始文件,不是X_new_tfidf,否则出现下面错误。</strong>
np.mean(predicted == y_new_target)
Out[51]: 0.5
predicted = text_clf.predict(X_new_tfidf)
Traceback (most recent call last):
File "<ipython-input-52-20002e79f960>", line 1, in <module>
predicted = text_clf.predict(X_new_tfidf)
File "D:\Anaconda\lib\site-packages\sklearn\pipeline.py", line 149, in predict
Xt = transform.transform(Xt)
File

本文介绍了如何利用scikit-learn的Pipeline将文本数据预处理(vectorizer)、转换(transformer)和分类器(classifier)进行整合,并通过网格搜索进行参数调优。
最低0.47元/天 解锁文章
1508

被折叠的 条评论
为什么被折叠?



