【图像融合】一种基于粒子群优化的自适应多光谱图像融合附matlab代码及论文

1 简介

In this paper, a novel image fusion method for remote sensing applications is proposed. In order to estimate the primitive detail map, the band coefficients of multispectral images are computed using least squares method. To refine the detail map and better image fusion, an adaptive method is proposed to compute the weights of linear combinations of panchromatic (Pan) and multispectral (MS) gradients. The injected weights are calculated using particle swarm optimization (PSO). Two data sets obtained by WorldView-3 and QuickBird satellites are employed for testing the assessment and comparing with state-of-art methods.

2 部分代码

%% This code is used to estimate the weights of the MultiSpectral (MS) bands based on Adaptive IHS (AIHS) method.%% References % [1]   S. Rahmani, M. Strait, D. Merkurjev, M. Moeller, and T. Wittman, %           M         -   Low Resolution MS (LRMS) image to size of PANchromatic (PAN) image%           P          -   Original PAN image%% In the outputs you can find the estimated weight for each MS band%       findalph  -   Spectral weightsfunction findalph = impGradDes(M, P)[n, m, d] = size(M);%% Initializing the optimal weight vectorfindalph = ones(d,1);%% Optimization processfor i=1:d   for j=1:d   A(i,j) = sum(sum(M(:,:,i).*M(:,:,j)));   end   B(i,1) = sum(sum(P.*M(:,:,i)));endtau = 5;iter = 150000;gamma1 = 1/200000;gamma2 = 1;inv = (eye(d) + 2*tau*gamma1*A)^(-1);for i = 1:iter   findalph = inv * (findalph+2*tau*max(-findalph,0)+2*tau*gamma1*B);end%% EOF

3 仿真结果

4 参考文献

A. Azarang and H. Ghassemian, "An adaptive multispectral image fusion using particle swarm optimization," 2017 Iranian Conference on Electrical Engineering (ICEE), 2017, pp. 1708-1712, doi: 10.1109/IranianCEE.2017.7985325.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值