刚刚,2021诺贝尔物理学奖颁给了研究复杂物理系统的他们

fef604d9a2f41fca5dbb3416abe80bc2.png

据诺贝尔奖官网消息,2021年诺贝尔物理学奖将一半颁给了

真锅淑郎(Syukuro Manabe)

克劳斯·哈塞尔曼(Klaus Hasselmann)

表彰他们“地球气候的物理建模,量化可变性并可靠地预测全球变暖”。

另一半颁给了

乔治·帕里西 (Giorgio Parisi)

表彰他“因为发现了从原子到行星尺度的物理系统中无序和波动的相互作用”。

b800e0c34751d31d44ece9605833e6c0.gif 

乔治·帕里西(Giorgio Parisi,1948-) 是意大利理论物理学家,现罗马一大物理系教授(University of Roma I ‘‘La Sapienza’’)。他的研究领域主要集中在量子场论、统计力学以及复杂系统。Parisi 获得荣誉无数,包括1999年Dirac奖,2002年费米奖,2005年Heineman数学物理奖和2021年沃尔夫奖等等。

922cd2feeef6379ebfe8bb3a205fe2f6.png

图片来自沃尔夫奖主页[1]

Parisi早年的工作是在QCD和粒子物理场论方面,著名的贡献有部分子密度的QCD演化方程(Altarelli-Parisi方程)。统计力学方面,他得到了自旋玻璃 Sherrington-Kirkpatrick 模型的精确解。他和Kardar,张翼成提出的KPZ(Kardar-Parisi-Zhang)方程,在统计物理、固体物理、偏微分方程等领域均有十分巨大的影响力。

1970年Parisi在 Nicola Cabibbo的指导下从罗马一大毕业。Cabibbo本人是著名的粒子物理学家,弱作用中的混合角就是以他名字命名(Cabibbo角)。随后Pariasi在意大利弗拉斯卡蒂国家实验室(Laboratori Nazionali di Frascati)、美国哥伦比亚大学、法国高等研究院(IHES)、巴黎高师等地工作,1981年到1992年他在罗马二大(University of Rome Tor Vergata)任教授。

简单浏览Parisi的谷歌学术个人主页,能看到他的引用次数已经超过9万。2021年沃尔夫奖的颁奖词[1]写道:

“……他是近几十年来最具创造力和影响力的理论物理学家之一。他的工作对物理学不同分支有极大的影响,包括粒子物理、临界现象、无序系统、以及优化理论和数学物理”

QCD演化理论

1977年,Parisi 和 Altarelli一起发现了核子中的夸克和胶子分布的演化方程[2](又称DGLAP方程,为独立发现这个方程的三组工作的五个人姓氏首字母)。强相互作用的QCD理论中,部分子(夸克和胶子的统称)的分布函数随能标和参考能标(截断)相关,这个分布函数是描述深度非弹性散射截面的重要因子。Parisi与Altarelli用简洁的微扰场论办法给出了分布函数随能标变化的演化方程,是QCD理论与强子实验中一个极其重要的结果。感兴趣的小伙伴们可以参考[3]。

统计力学:自旋玻璃

凝聚态物理中,自旋玻璃是一种有随机性的磁量子态。我们通常所说的磁自旋,一般是三维空间中指向两个磁极的自旋,比如说在铁磁性物质中,磁自旋指向同一个方向;反铁磁性物质中,相邻的自旋会交错朝向相反的方向。相比之下,自旋玻璃是一种 “无序的” 磁量子态,自旋取向随机,没有固定模式,自旋之间的耦合系数也是随机的,“玻璃”一词正刻画了这种无序的性质,因为日常生活中常见的玻璃是就是典型的非晶体,没有晶格结构,各种物理性质都区别于晶体。

573b6ed11d24f0a7f804359708790139.png

上面为自旋玻璃结构示意图,下面为铁磁晶体示意图

图片来自wikipedia词条[6]

自旋玻璃中的原子间耦合(化学键)由大致上相同数目的铁磁键和反铁磁键混合而成,相比指向完全有序的体系,这种几何上的扭曲被称作受阻挫。这种结构带来的结果是,自选玻璃的稳态构型并不是最低能量构型,因此常常被称为“亚稳态”。

1975年David Sherrington 和 Scott Kirkpatrick 提出了一个重要的精确可解的自选玻璃模型,它的形式是类似于伊辛模型(Ising model)的两体耦合,但耦合系数是一个高斯分布,且两体不需要是相邻的,体系中任意两个自旋都相互耦合。随机性和全体-全体相互作用(all-to-all)带来自旋玻璃复杂的结构。

在1979到1984年的一系列工作中,Parisi引入了复本对称破缺(replica symmetry breaking)的概念并将其应用到上述自旋玻璃模型(Sherrington-Kirkpartick模型)中去,给出了平衡态的解。随后的众多作者的一系列工作,包括Mezard,Parisi,Virasoro等等,发现了阻挫自旋玻璃相的非遍历本质等等性质。对这种新物质结构的讨论引发了统计物理中深刻的发展,后续在各种无序体系中有广泛的应用,例如Replica方法在神经网络的研究中的使用。

KPZ方程:界面增长

虽然随机过程的研究已经有很深刻的数学体系,例如对布朗运动的微分方程描述等。但大自然中还有许多概率现象是人们没有理解的,比如我们要说的界面增长:最简单的例子就是,取一张四方的白纸,均匀点燃它朝下的边,然后观察燃烧部分和未燃烧部分的边界自下而上地移动。又比如,一个一维(或者二维)的平台上,自天花板不断均匀掉落一些小颗粒,这些小颗粒在平台上堆积的表面随着时间流逝而增长(像极了一个大型的俄罗斯方块有木有~)。

ae11ad0546ec26a261c6b57af29e4fdf.png

“俄罗斯方块”给出一维的界面增长。图片来自Corwin的讲座[5].

这个界面变化的过程,数学上可以用一个高度函数来描述,这个函数随着时间演化而变化,因此是空间坐标和时间的函数。Kardar,Parisi和张翼成于1986年提出用如下的偏微分方程来描述[9]:

6b60be36274f40c0b5117df014b63ddc.png


这个过程区别于一般的布朗运动方程的地方在于,它是一个非线性方程,上面公式中的h对x导数的平方项是非线性的。如果我们抛开这个非线性项,剩余的部分里82e9f06b271685f3d4412ac91e91501d.png是一个高斯噪声,期望值为0,时间空间的关联函数也为0,我们得到的就是个普通的随机热方程,可以通过傅立叶变化求解。这个非线性项也是KPZ方程核心的项,刻画了高度函数的局部的梯度对边界增长的贡献。换言之,局部看界面会有沿着法向的增长,这个增长投影到高度函数上就会给出一部分贡献。KPZ方程给出了一个特别的普适类(KPZ universality class),涨落的标准差(或简单理解称边界区域的宽度)是按时间的三分之一次方演化的(growth exponent fa0c9f3fc11fa0a4628250461d05ad78.png)。KPZ普适类广泛出现在许多统计模型中,甚至近年来随机量子幺正电路的研究中也会有类似的效应[10]。

也正因为非线性项的存在,数学上高度函数57f8547c30dd0927f255cf9d59dad766.png的光滑性变得很糟糕,方程的解的数学定义上就有了问题。这类奇异的偏微分方程仍然在研究中,奥地利籍数学家Martin Haire就因对KPZ方程的突出研究,获得了2014年的菲尔兹奖。这部分的讨论详见[6].

6d177f0422fe1727432d600efd9e1846.png

Mehran Kardar, 伊朗裔著名统计物理学家,现麻省理工学院教授(图片来自[11])

516240822fc3caad8b7eb527659e7286.png

张翼成,现瑞士弗里堡大学教授(University of Fribourg),研究包括统计物理、经济学、网络与复杂系统等(图片来自[12])

其它工作

除了上述最著名的一些统计物理的工作以外,Parisi在场论、计算物理等方面也有重要建树,比如场论中的平面图大N-展开,统计场论,格点QCD等等。他的《统计场论》也是领域里十分具有代表性的著作。Parisi的工作中处处有着统计力学的简洁和近似的思想。

想要更加详细了解今年的诺贝尔物理学奖

== 猛戳这里阅读解读文章✔ == 

就能看到我们光速为您带来的诺奖解析

参考来源:

[1]沃尔夫奖主页 https://wolffund.org.il/2021/02/09/giorgio-parisi/

[2]Altarelli, G.; Parisi, G. ["Asymptotic freedom in parton language"](https://dx.doi.org/10.1016%2F0550-3213(77)90384-4). *Nuclear Physics B*. **126** (2): 298–318(1977)

[3]http://www.scholarpedia.org/article/QCD_evolution_equations_for_parton_densities

[4]Wikipedia, Kardar–Parisi–Zhang equation.

[5]https://www.math.columbia.edu/~corwin/IHPTalk1.pdf

[6]https://mp.weixin.qq.com/s/04LOs-jvGuYwkqjhv4Ymjw

[7]https://en.wikipedia.org/wiki/Spin_glass

[8]https://chimera.roma1.infn.it/GIORGIO/interviews.html

[9]Phys Rev Lett. 56, 889(1986), Dynamic Scaling of Growing Interfaces

[10]A. Nahum etc., Phys Rev X 7, 031016(2017)

[11]http://www.mit.edu/~kardar/

[12]https://baike.baidu.com/item/%E5%BC%A0%E7%BF%BC%E6%88%90/10062983?fr=aladdin

作者:新晨

编辑:诺奖小分队

e486b6e0e1f3035fef3bf42f1762a9cc.gif

我们是谁:

MatheMagician,中文“数学魔术师”,原指用数学设计魔术的魔术师和数学家。既取其用数学来变魔术的本义,也取像魔术一样玩数学的意思。文章内容涵盖互联网,计算机,统计,算法,NLP等前沿的数学及应用领域;也包括魔术思想,流程鉴等魔术内容;以及结合二者的数学魔术分享,还有一些思辨性的谈天说地的随笔。希望你能和我一起,既能感性思考又保持理性思维,享受人生乐趣。欢迎扫码关注和在文末或公众号留言与我交流!

b2c5d4a747cf2737ddb793bd7fb9a4f8.gif

b10c16fd631d8ecd519f51efedb36e52.png

0876803799bb88072dee39b259ad7b51.png

扫描二维码

关注更多精彩

Gilbreath原理中的数学与魔术(六)——Ultimate Gilbreath原理进阶应用魔术《10张牌的感应》

扒一扒那些叫欧拉的定理们(十二)——经济学里的欧拉定理

Si Stebbins Stack中的数学与魔术(十一)——《Woody on Stebbins》作品赏析

袁亚湘院士上《开讲啦》变数学魔术啦!

如果道具不能检查,那就毁了它!(二)——一般道具篇

4450df6b07462581ba3ab9c734d51f79.gif

点击阅读原文,往期精彩不错过!

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值