1
这一题奇偶分开讨论。
当n为偶数,n=2k时, x 2 k = 1 2 k ∣ 1 − 2 + 3 − . . . + ( 2 k − 1 ) − 2 k ∣ x_{2k}=\frac1{2k}|1-2+3-...+(2k-1)-2k| x2k=2k1∣1−2+3−...+(2k−1)−2k∣;
当n为奇数,n=2k+1时, x 2 k + 1 = 1 2 k + 1 ∣ 1 − 2 + 3 − . . . − 2 k + ( 2 k + 1 ) ∣ x_{2k+1}=\frac1{2k+1}|1-2+3-...-2k+(2k+1)| x2k+1=2k+11∣1−2+3−...−2k+(2k+1)∣;
2
先把极限里面的式子处理好
∏ k = 2 n k 3 − 1 k 3 + 1 = ∏ k = 2 n ( k − 1 ) ( k 2 + k + 1 ) ( k + 1 ) ( k 2 − k + 1 ) = ∏ k = 2 n k − 1 k + 1 ∏ k = 2 n ( k 2 + 1 ) − ( k + 1 ) + 1 k 2 − k + 1 = 2 n ( n + 1 ) ⋅ n 3 − n + 1 3 \prod_{k=2}^n\frac{k^3-1}{k^3+1}=\prod_{k=2}^n\frac{(k-1)(k^2+k+1)}{(k+1)(k^2-k+1)}=\prod_{k=2}^n\frac{k-1}{k+1}\prod_{k=2}^n\frac{(k^2+1)-(k+1)+1}{k^2-k+1}=\frac{2}{n(n+1)}\cdot \frac{n^3-n+1}{3} ∏k=2nk3+1k3−1=∏k=2n(k+1)(k2−k+1)(k−1)(k2+k+1)=∏k=2nk+1k−1∏k=2nk2−k+1(k2+1)−(k+1)+1=n(n+1)2⋅3n3−n+1
再代回原式子
通过递归得:
a
n
a
n
−
1
=
(
n
+
1
)
(
a
n
+
1
)
=
>
1
a
n
+
1
=
(
n
+
1
)
(
1
+
1
a
n
)
\frac{a_n}{a_{n-1}}=(n+1)(a_n+1)=>\frac1{a_{n+1}}=(n+1)(1+\frac1{a_n})
an−1an=(n+1)(an+1)=>an+11=(n+1)(1+an1)
1
a
n
=
n
(
1
+
1
a
n
−
1
)
=
n
+
n
(
n
−
1
)
(
1
+
1
a
n
−
2
)
=
.
.
.
=
n
+
n
(
n
−
1
)
+
n
(
n
−
1
)
(
n
−
2
)
+
.
.
.
+
n
!
\frac1{a_{n}}=n(1+\frac1{a_{n-1}})=n+n(n-1)(1+\frac1{a_{n-2}})=...=n+n(n-1)+n(n-1)(n-2)+...+n!
an1=n(1+an−11)=n+n(n−1)(1+an−21)=...=n+n(n−1)+n(n−1)(n−2)+...+n!
l
i
m
n
−
>
∞
1
a
n
n
!
=
1
(
n
−
1
)
!
+
1
(
n
−
2
)
!
+
.
.
.
+
1
lim_{n->\infin}\frac1{a_{n}n!}=\frac1{(n-1)!}+\frac1{(n-2)!}+...+1
limn−>∞ann!1=(n−1)!1+(n−2)!1+...+1
看到非齐次的递归,可以用取对数化解。
两边取对数 2 l n x n + 2 = l n x n + 1 + l n x n 2lnx_{n+2}=lnx_{n+1}+lnx_n 2lnxn+2=lnxn+1+lnxn=> 2 ( l n x n + 2 − l n x n + 1 ) = − l n x n + 1 + l n x n 2(lnx_{n+2}-lnx_{n+1})=-lnx_{n+1}+lnx_n 2(lnxn+2−lnxn+1)=−lnxn+1+lnxn=> l n x n + 2 − l n x n + 1 = ( − 1 2 ) n l n 2 lnx_{n+2}-lnx_{n+1}=(-\frac12)^n ln2 lnxn+2−lnxn+1=(−21)nln2
求出 x n + 2 x_{n+2} xn+2: l n x n + 2 = ( − 1 2 ) n l n 2 + ( − 1 2 ) n − 1 l n 2 + . . . + ( − 1 2 ) l n 2 + l n 2 = l n 2 ∑ i = 0 n ( − 1 2 ) i = l n 2 2 3 ( 1 − ( 1 2 ) n ) lnx_{n+2}=(-\frac12)^n ln2+(-\frac12)^{n-1} ln2+...+(-\frac12)ln2+ln2=ln2\sum_{i=0}^n{(-\frac12)^i}=ln2\frac23(1-(\frac12)^n) lnxn+2=(−21)nln2+(−21)n−1ln2+...+(−21)ln2+ln2=ln2∑i=0n(−21)i=ln232(1−(21)n)
等比数列求和公式如下:
l i m n − > ∞ x n = l i m n − > ∞ x n + 2 = e l n 2 2 3 = 2 2 3 lim_{n->\infin}x_{n}=lim_{n->\infin}x_{n+2}=e^{ln2\frac23}=2^{\frac23} limn−>∞xn=limn−>∞xn+2=eln232=232