信号与系统疑难点总结
1. 系统线性、时不变性的判定
统一判定公式:
判定线性系统条件:
T
[
a
x
1
(
t
)
+
b
x
2
(
t
)
]
=
?
T
[
a
x
1
(
t
)
]
+
T
[
b
x
2
(
t
)
]
T[ax_1(t)+bx_2(t)] \overset{?}{=} T[ax_1(t)] + T[bx_2(t)]
T[ax1(t)+bx2(t)]=?T[ax1(t)]+T[bx2(t)]
判定时不变系统条件:
T
[
x
(
t
−
t
0
)
]
=
?
y
(
t
−
t
0
)
T[x(t-t_0)] \overset{?}{=} y(t-t_0)
T[x(t−t0)]=?y(t−t0)
例:判定 $y(t) = x(t)^2 $是否为线性系统
解:
根据线性系统的判定条件:
T [ a x 1 ( t ) + b x 2 ( t ) ] = [ a x 1 ( t ) + b x 2 ( t ) ] 2 T[ax_1(t) + bx_2(t)] = [ax_1(t)+bx_2(t)]^2 T[ax1(t)+bx2(t)]=[ax1(t)+bx2(t)]2
即:将原式中的 x ( t ) x(t) x(t) 由 a x 1 ( t ) + b x 2 ( t ) ax_1(t) + bx_2(t) ax1(t)+bx2(t) 所代替
T [ a x 1 ( t ) ] + T [ b x 2 ( t ) ] = [ a x 1 ( t ) ] 2 + [ b x 2 ( t ) ] 2 T[ax_1(t)] + T[bx_2(t)] = [ax_1(t)]^2+[bx_2(t)]^2 T[ax1(t)]+T[bx2(t)]=[ax1(t)]2+[bx2(t)]2
二者并不相等,因此此系统为非线性系统。例:判定 y ( t ) = c o s ( w t ) x ( t ) y(t) = cos(wt)x(t) y(t)=cos(wt)x(t) 是否为时不变系统
解:
根据时不变系统的判定条件:
T [ x ( t − t 0 ) ] = c o s ( w t ) x ( t − t 0 ) y ( t − t 0 ) = c o s [ w ( t − t 0 ) ] x ( t − t 0 ) T[x(t-t_0)] = cos(wt)x(t-t_0)\\ y(t-t_0) = cos[w(t-t_0)]x(t-t_0) T[x(t−t0)]=cos(wt)x(t−t0)y(t−t0)=cos[w(t−t0)]x(t−t0)
二者并不相等,因此此系统为时变系统。
2. 流程图写出传递函数
三种基本变换:
- 串联
ϕ
(
s
)
=
G
1
(
s
)
G
2
(
s
)
\phi(s) = G_1(s)G_2(s)
ϕ(s)=G1(s)G2(s)
- 并联
ϕ
(
s
)
=
G
1
(
s
)
+
G
2
(
s
)
\phi(s) = G_1(s)+G_2(s)
ϕ(s)=G1(s)+G2(s)
- 反馈
ϕ
(
s
)
=
G
1
(
s
)
1
±
G
2
(
s
)
\phi(s) = \cfrac{G_1(s)}{1\pm G_2(s)}
ϕ(s)=1±G2(s)G1(s)
梅森公式:
ϕ
(
s
)
=
∑
P
k
Δ
k
Δ
\phi(s)=\frac{\sum P_{k} \Delta_{k}}{\Delta}
ϕ(s)=Δ∑PkΔk
- Δ \Delta Δ : 特征式
Δ = 1 − ∑ L i + ∑ L i L j − ∑ L i L j L k + ⋯ \Delta=1-\sum L_{i}+\sum L_{i} L_{j}-\sum L_{i} L_{j} L_{k}+\cdots Δ=1−∑Li+∑LiLj−∑LiLjLk+⋯
- ∑ L i \sum L_{i} ∑Li : 所有两两互不接触的回路增益之和
- ∑ L i L j \sum L_{i} L_{j} ∑LiLj : 所有回路 (每个单独的回路) 的回路增益之和
- ∑ L i L j L k \sum L_{i} L_{j} L_{k} ∑LiLjLk : 所有三二互不接触的回路增益之和
- P k P_{k} Pk : 从输入节点到输出节点的第 $ K $条前向通路的增益
- Δ k \Delta_{k} Δk :在 $ \Delta $ 中,将与第 $ K 条 前 向 通 路 接 触 的 回 路 去 除 后 , 余 下 的 条前向通路接触的回路去除后,余下的 条前向通路接触的回路去除后,余下的 \Delta $,称作余子式
例: 利用梅森公式对下列流程图进行化简:
系统回路:
L 1 = − G 1 ( s ) G 2 ( s ) H 1 ( s ) L 2 = − G 2 ( s ) G 3 ( s ) H 2 ( s ) L 3 = − G 1 ( s ) G 2 ( s ) G 3 ( s ) L 4 = − G 1 ( s ) G 4 ( s ) L 5 = − G 4 ( s ) H 2 ( s ) L_1 = -G_1(s)G_2(s)H_1(s)\\ L_2 = -G_2(s)G_3(s)H_2(s)\\ L_3 = -G_1(s)G_2(s)G_3(s)\\ L_4 = -G_1(s)G_4(s)\\ L_5=-G_4(s)H_2(s) L1=−G1(s)G2(s)H1(s)L2=−G2(s)G3(s)H2(s)L3=−G1(s)G2(s)G3(s)L4=−G1(s)G4(s)L5=−G4(s)H2(s)
无相互不接触的回路,即:
∑ L i L j = 0 \sum L_iL_j=0 ∑LiLj=0
则,特征式为:
Δ = 1 − ∑ L i = 1 + G 1 ( s ) G 2 ( s ) H 1 ( s ) + G 2 ( s ) G 3 ( s ) H 2 ( s ) + G 1 ( s ) G 2 ( s ) G 3 ( s ) + G 1 ( s ) G 4 ( s ) + G 4 ( s ) H 2 ( s ) \Delta = 1-\sum L_i\\ =1+G_1(s)G_2(s)H_1(s)+G_2(s)G_3(s)H_2(s)+G_1(s)G_2(s)G_3(s)+G_1(s)G_4(s)+G_4(s)H_2(s) Δ=1−∑Li=1+G1(s)G2(s)H1(s)+G2(s)G3(s)H2(s)+G1(s)G2(s)G3(s)+G1(s)G4(s)+G4(s)H2(s)
前向通路:
P 1 ( s ) = G 1 ( s ) G 2 ( s ) G 3 ( s ) P 2 = G 1 ( s ) G 4 ( s ) P_1(s) = G_1(s)G_2(s)G_3(s) \\P_2 = G_1(s)G_4(s) P1(s)=G1(s)G2(s)G3(s)P2=G1(s)G4(s)对应的余子式为:
Δ 1 = 1 Δ 2 = 1 \Delta_1 =1\\ \Delta_2 = 1 Δ1=1Δ2=1
则对应的传递函数是:
ϕ ( s ) = ∑ P k Δ k Δ = P 1 + P 2 Δ = G 1 ( s ) G 2 ( s ) G 3 ( s ) + G 1 ( s ) G 4 ( s ) 1 + G 1 ( s ) G 2 ( s ) H 1 ( s ) + G 2 ( s ) G 3 ( s ) H 2 ( s ) + G 1 ( s ) G 2 ( s ) G 3 ( s ) + G 1 ( s ) G 4 ( s ) + G 4 ( s ) H 2 ( s ) \phi(s)=\frac{\sum P_{k} \Delta_{k}}{\Delta} = \cfrac{P_1+P_2}{\Delta}\\ =\cfrac{G_1(s)G_2(s)G_3(s)+G_1(s)G_4(s)}{1+G_1(s)G_2(s)H_1(s)+G_2(s)G_3(s)H_2(s)+G_1(s)G_2(s)G_3(s)+G_1(s)G_4(s)+G_4(s)H_2(s)} ϕ(s)=Δ∑PkΔk=ΔP1+P2=1+G1(s)G2(s)H1(s)+G2(s)G3(s)H2(s)+G1(s)G2(s)G3(s)+G1(s)G4(s)+G4(s)H2(s)G1(s)G2(s)G3(s)+G1(s)G4(s)
3. 由传递函数画流程图
从例题感悟绘制方法
例1:
H
(
s
)
=
1
s
+
3
=
Y
(
s
)
X
(
s
)
H(s)=\frac{1}{s+3}=\frac{Y(s)}{X(s)}
H(s)=s+31=X(s)Y(s)
Let
E
(
s
)
=
s
Y
(
s
)
E(s)=s Y(s)
E(s)=sY(s)
Then,
1
s
E
(
s
)
=
Y
(
s
)
E
(
s
)
=
X
(
s
)
−
3
Y
(
s
)
\begin{gathered} \cfrac{1}{s} E(s)=Y(s) \\ E(s)=X(s)-3 Y(s) \end{gathered}
s1E(s)=Y(s)E(s)=X(s)−3Y(s)
例二:
H
(
s
)
=
1
s
2
+
3
s
+
2
=
Y
(
s
)
X
(
s
)
H(s)=\cfrac{1}{s^{2}+3 s+2}=\cfrac{Y(s)}{X(s)}
H(s)=s2+3s+21=X(s)Y(s)
(1) Direct-form Let
F
(
s
)
=
s
Y
(
s
)
E
(
s
)
=
s
F
(
s
)
=
s
2
Y
(
s
)
F(s)=s Y(s) \\ E(s)=s F(s)=s^{2} Y(s)
F(s)=sY(s)E(s)=sF(s)=s2Y(s)
Then,
E
(
s
)
=
X
(
s
)
−
3
F
(
s
)
−
2
Y
(
s
)
E(s)=X(s)-3 F(s)-2 Y(s)
E(s)=X(s)−3F(s)−2Y(s)
例三:
H ( s ) = 2 s 2 + 4 s − 6 s 2 + 3 s + 2 H ( s ) = ( 1 s 2 + 3 s + 2 ) ( 2 s 2 + 4 s − 6 ) = Y ( s ) X ( s ) Let Z ( s ) = 1 s 2 + 3 s + 2 X ( s ) ( 2 s 2 + 4 s − 6 ) Z ( s ) = Y ( s ) F ( s ) = s Z ( s ) E ( s ) = s F ( s ) = s 2 Z ( s ) Y ( s ) = ( 2 s 2 + 4 s − 6 ) Z ( s ) = 2 E ( s ) + 4 F ( s ) − 6 Z ( s ) H(s)=\cfrac{2 s^{2}+4 s-6}{s^{2}+3 s+2} \\ H(s)=\left(\cfrac{1}{s^{2}+3 s+2}\right)\left(2 s^{2}+4 s-6\right)=\frac{Y(s)}{X(s)} \\ \text { Let } Z(s)=\cfrac{1}{s^{2}+3 s+2} X(s) \\ \left(2 s^{2}+4 s-6\right) Z(s)=Y(s) \\ F(s)=s Z(s) E(s)=s F(s)=s^{2} Z(s) \\ Y(s)=\left(2 s^{2}+4 s-6\right) Z(s) \\ =2 E(s)+4 F(s)-6 Z(s) H(s)=s2+3s+22s2+4s−6H(s)=(s2+3s+21)(2s2+4s−6)=X(s)Y(s) Let Z(s)=s2+3s+21X(s)(2s2+4s−6)Z(s)=Y(s)F(s)=sZ(s)E(s)=sF(s)=s2Z(s)Y(s)=(2s2+4s−6)Z(s)=2E(s)+4F(s)−6Z(s)
