用scikit-learn学习K-Means聚类

本文通过使用Python的sklearn库实现KMeans算法对合成数据集进行聚类,并利用Calinski-Harabasz Index评估不同数量簇的聚类效果。

本文转载自刘建平

    建立数据

import numpy as np
import matplotlib.pyplot as plt
#%matplotlib inline
from sklearn.datasets.samples_generator import make_blobs
# X为样本特征,Y为样本簇类别, 共1000个样本,每个样本4个特征,共4个簇,簇中心在[-1,-1], [0,0],[1,1], [2,2], 簇方差分别为[0.4, 0.2, 0.2]
X, y = make_blobs(n_samples=1000, n_features=2, centers=[[-1,-1], [0,0], [1,1], [2,2]], cluster_std=[0.4, 0.2, 0.2, 0.2], 
                  random_state =9)
plt.scatter(X[:, 0], X[:, 1], marker='o')
plt.show()

这里写图片描述

    分2类

from sklearn.cluster import KMeans
y_pred = KMeans(n_clusters=2, random_state=9).fit_predict(X)
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.show()

这里写图片描述

    Calinski-Harabasz Index评估的聚类分数

from sklearn import metrics
metrics.calinski_harabaz_score(X, y_pred)

Out[52]: 3116.1706763322227

    分3类

from sklearn.cluster import KMeans
y_pred = KMeans(n_clusters=3, random_state=9).fit_predict(X)
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.show()

这里写图片描述

    Calinski-Harabasz Index评估的聚类分数

from sklearn import metrics
metrics.calinski_harabaz_score(X, y_pred)

Out[54]: 2931.625030199556

    分4类

from sklearn.cluster import KMeans
y_pred = KMeans(n_clusters=4, random_state=9).fit_predict(X)
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.show()

这里写图片描述

    Calinski-Harabasz Index评估的聚类分数

metrics.calinski_harabaz_score(X, y_pred)
Out[56]: 5924.050613480169
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值