图片预处理
大家好,我是阿赵。
这一篇将两种基础的降噪算法。
之前介绍过均值模糊和高斯模糊。如果从降噪的角度来说,模糊算法也算是降噪的一类,所以之前介绍的两种模糊可以称呼为均值降噪和高斯降噪。不过模糊算法对原来的图像特征的减弱性太强,我们想在降噪的过程中,尽量保持原土地特征
1、 双边滤波降噪
模糊算法降噪,是使用卷积核,对像素点周围一定范围内的点进行加权平均。这种加权平均的权重只考虑了周围像素点和中心点像素的距离。
如果在距离的条件上,再加多一个色值差的条件,对比周围像素点和中心点像素点的色值差,然后再加进权重里面,最终求出色值,就是双边滤波算法了。
所以我们需要传入三个参数:
1. 滤波的半径,决定了中心像素点会搜索多大范围的周边像素点进行加权平均
2. 距离的sigma参数,决定了高斯核的权重,距离sigma值越大,离中心像素越远的点权重就越小
3. 色差值的sigma参数,决定了颜色差异的大小权重,色差值sigma值越大,像素差值的权重就越小
用伪代码来检查一个像素,就是:
循环每一个像素点,再循环周围一定范围内的像素:
float weight = -1*(像素距离差X+像素距离差Y)/距离sigma - (周边像素和中间像素色值差)/色差值;
weig

最低0.47元/天 解锁文章
397

被折叠的 条评论
为什么被折叠?



