【pytorch】微调技术

前言

训练神经网络是一件非常耗费时间的事情,其需要大量的算力以及大量的数据。显然从头开始训练并不是明智之选,利用好已有的资源才是明智之选。

微调技术

图像识别笼统地可以分为两步:

  1. 提取图片的特征,此部分往往通过CNN卷积神经网络实现。
  2. 根据提取的特征,进行分类,此部分往往通过全连接神经网络来实现。
  • 识别一只猫和识别一只狗有没有类似的地方呢?
    答案是有的,它们在提取图片特征都是非常相似的。
    考虑CNN中卷积的作用,它就是在识别不同的边缘,因此无论是猫,还是狗,图片特征都是类似的,但是如何根据这些特征来学习才是关键。

预训练模型

在图像识别中,有许多经典的神经网络,例如vgg,resnet等,对于这些经典的网络,pytorch都是提供了训练模型好的模型的。这些某些都是在ImageNet上训练好的,有较高的精确度。利用训练好的某些进行图片特征的提取,就能够大大减少训练的耗时。

代码实现

import torch
from torch import nn
from torch.nn import functional as F
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值