前置知识
质因数分解
利用Miller Rabin判断 n n n是不是质数,如果不是就进行分解,直到 n n n是质数。
每次利用Pollard rho分解出 n n n的一个因数,不妨记为 d d d。
同样利用Miller Rabin判断 d d d是不是质数,如果 d d d不是,则继续用Pollard rho分解和用Miller Rabin判断,直到 d d d为质数。
此时,就已经找到了 n n n的一个质因子 d d d,然后将 n n n中所有的 d d d给除去。
再重复上述步骤,直到 n n n的质数。
Code
//#pragma GCC optimize (2)
//#pragma G++ optimize (2)
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <iostream>
#include <vector>
#include <queue>
#define G getchar
#define ll long long
using namespace std;
ll read()
{
char ch;
for(ch = G();(ch < '0' || ch > '9') && ch != '-';ch = G());
ll n = 0 , w;
if (ch == '-')
{
w = -1;
ch = G();
} else w = 1;
for(;'0' <= ch && ch <= '9';ch = G())n = (n<<1)+(n<<3)+ch-48;
return n * w;
}
const int N = 100003;
ll n , ans;
ll pri[N] , k[N] , m;
int ss[16] = {2 , 3 , 5 , 7 , 11 ,13 , 17 , 19 , 23 , 29 , 325 , 9375 , 28187 , 450775 , 9870504 , 1795265022};
ll mul (ll a , ll b , ll p) //a*b%p
{
/*ll s = 0;
for ( ; b ; )
{
if (b & 1) s = (s + a) % p;
a = (a + a) % p;
b = b >> 1;
}
return s;*/
ll s = a * b - (ll)((long double) a * b / p +0.5) * p;
return s < 0 ? s + p : s;
}
ll ksm (ll x , ll y , ll p)
{
ll s = 1;
for ( ; y ; )
{
if (y & 1) s = mul(s , x , p);
x = mul (x , x , p);
y = y >> 1;
}
return s;
}
bool MR_detect (ll n , ll a)
{
if (n == a) return 1;
if (a % n == 0) return 1;
if (ksm(a , n - 1 , n) != 1) return 0;
ll p = n - 1 , lst = 1;
for ( ; ((p & 1) ^ 1) && lst == 1 ; )
{
p = p >> 1;
lst = ksm(a , p , n);
if (lst != 1 && lst != n - 1) return 0;
}
return 1;
}
bool MR(ll n)
{
if (n < 2) return 0;
for (int i = 0 ; i < 16 ; i ++)
if (! MR_detect(n , ss[i])) return 0;
return 1;
}
ll F(ll x , ll C , ll p)
{
return (mul(x , x , p) + C) % p;
}
ll gcd(ll a , ll b)
{
return a % b ? gcd(b , a % b) : b;
}
ll Rand()
{
return (ll)rand() + ((ll)rand() << 15) + ((ll)rand() << 30) + ((ll)rand() << 45);
}
ll PR(ll n)
{
if (MR(n)) return n;
if (n == 4) return 2;
for ( ; ; )
{
ll C = Rand() % (n - 1) + 1;
ll p1 = 0 , p2 = 0;
ll s = 1 , tmp;
for ( ; ; )
{
for (int i = 0 ; i < 128 ; i++)
{
p2 = F(F(p2 , C , n) , C , n);
p1 = F(p1 , C , n);
tmp = mul(s , abs(p1 - p2) , n);
if (tmp == 0 || p1 == p2) break;
s = tmp;
}
tmp = gcd(n , s);
if (tmp > 1) return tmp;
if (p1 == p2) break;
}
}
}
int main()
{
//freopen("1.txt","r",stdin);
//freopen("2.txt","w",stdout);
srand((unsigned)0);
//printf("350\n");
//for (int i = 1 ; i <= 350 ; i++)printf("%lld\n", Rand());
for (int T = read() ; T ;T--)
{
n = read();
if (MR(n)) printf("Prime\n"); else
{
m = 0;
for ( ; n != 1 ; )
{
ll tmp = PR(n);
for ( ; !MR(tmp) ; )tmp = PR(tmp);
m++;
pri[m] = tmp;
k[m] = 0;
for ( ; n % tmp == 0 ; )
{
k[m]++;
n = n / tmp;
}
}
//for (int i = 1 ; i <= m ; i++)
// printf("%lld^%lld\n", pri[i] , k[i]);
ans = 0;
for (int i = 1 ; i <= m ; i++)
ans = max(ans , pri[i]);
printf("%lld\n", ans);
}
}
return 0;
}