简单的矩阵快速幂问题,取n的最后m位数字即为模取10的m次方。
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
//const ll mod=1e9+7;
ll mod;
struct matrix{
ll x[2][2];
};
matrix multi(matrix a,matrix b)//矩阵相乘
{
matrix temp;
memset(temp.x,0,sizeof(temp.x));
for(int i=0;i<2;i++)
for(int j=0;j<2;j++)
for(int k=0;k<2;k++)
{
temp.x[i][j]+=a.x[i][k]*b.x[k][j];
temp.x[i][j]%=mod;
}
return temp;
}
matrix quick_multi(matrix a,ll k)//矩阵快速幂
{
matrix temp=a;
k--;
while(k){
if(k&1)
temp=multi(temp,a);
a=multi(a,a);
k>>=1;
}
return temp;
}
int main()
{
int t;scanf("%d",&t);
while(t--){
int a,b,m;
ll n;
scanf("%d%d%lld%d",&a,&b,&n,&m);
mod=1;
while(m--) mod*=10;
if(n==0){
printf("%d\n",a%mod);
continue;
}
if(n==1){
printf("%d\n",b%mod);
continue;
}
matrix A;
matrix ans;
memset(A.x,0,sizeof(A.x));
memset(ans.x,0,sizeof(ans.x));
A.x[0][0]=1;A.x[1][0]=1;
A.x[0][1]=1;A.x[1][1]=0;
ans.x[0][0]=b;ans.x[0][1]=a;
A=quick_multi(A,n-1);
ans=multi(ans,A);
printf("%lld\n",(ans.x[0][0]+mod)%mod);
}
return 0;
}