根据题目给的代码可以打表得出一些数据,再用高斯消元得出递推式
题目解法类似于hdu 6198
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
//const ll mod=1e9+7;
ll mod;
struct matrix{
ll x[3][3];
};
matrix multi(matrix a,matrix b)//矩阵相乘
{
matrix temp;
memset(temp.x,0,sizeof(temp.x));
for(int i=0;i<3;i++)
for(int j=0;j<3;j++)
for(int k=0;k<3;k++)
{
temp.x[i][j]+=a.x[i][k]*b.x[k][j];
temp.x[i][j]%=mod;
}
return temp;
}
matrix quick_multi(matrix a,ll k)//矩阵快速幂
{
matrix temp=a;
k--;
while(k){
if(k&1)
temp=multi(temp,a);
a=multi(a,a);
k>>=1;
}
return temp;
}
int main()
{
ll n;
while(~scanf("%lld%lld",&n,&mod))
{
if(n==1){
printf("%lld\n",1%mod);
continue;
}
if(n==2){
printf("%lld\n",2%mod);
continue;
}
if(n==3){
printf("%lld\n",5%mod);
continue;
}
matrix A;
matrix ans;
memset(A.x,0,sizeof(A.x));
memset(ans.x,0,sizeof(ans.x));
A.x[0][0]=2;A.x[1][0]=1;A.x[2][0]=-2;
A.x[0][1]=1;A.x[1][2]=1;A.x[2][2]=0;
ans.x[0][0]=5;ans.x[0][1]=2;ans.x[0][2]=1;
A=quick_multi(A,n-3);
ans=multi(ans,A);
printf("%lld\n",(ans.x[0][0]+mod)%mod);
}
return 0;
}