Preface:This article is written for a nifty girl who I cherish.

(0)Pre-acknowledge
(0.0)Skew-symmetric matrix
a×b=[a]×ba×b=[a]^×ba×b=[a]×b
Among which [a]×[a]^×[a]×:
[0−azayaz0−ax−ayax0]\begin{bmatrix} 0&-a_z&a_y \\a_z & 0&-a_x \\-a_y&a_x&0 \end{bmatrix} \qquad⎣⎡0az−ay−az0axay−ax0⎦⎤
- Meaning: 用反对称矩阵乘代替了外积,使运算方便
- Proving:
We know that:
(x1,y1,z1)×(x2,y2,z2)(x_1,y_1,z_1)×(x_2,y_2,z_2)(x1,y1,z1)×(x2,y2,z2)=(∣x1y1z1x2y2z2ijk∣)( \left|\begin{array}{cccc} x_1 & y_1& z_1 \\ x_2& y_2& z_2\\ i & j & k \end{array}\right| )(∣∣∣∣∣∣x1x2iy1y2jz1z2k∣∣∣∣∣∣)
=
[y1z2−y2z1z1x2−z2x1x1y2−x2y1]\begin{bmatrix} y_1z_2-y_2z_1 \\z_1x_2-z_2x_1 \\x_1y_2-x_2y_1 \end{bmatrix}⎣⎡y1z2−y2z1z1x2−z2x1x1y2−x2y1⎦⎤=[0∗x2−z1y2+y1z2z1x2+0∗y2−x1z2−y1x2+x1y2+0∗z2]\begin{bmatrix} 0*x_2-z_1y_2+y_1z_2 \\z_1x_2+0*y_2-x_1z_2 \\-y_1x_2+x_1y_2+0*z_2 \end{bmatrix}⎣⎡0∗x2−z1y2+y1z2z1x2+0∗y2−x1z2−y1x2+x1y2+0∗z2⎦⎤
=
[0−z1y1z10−x1−y1x10]∗[x2y2z2]\begin{bmatrix} 0&-z_1&y_1 \\z_1 & 0&-x_1 \\-y_1&x_1&0 \end{bmatrix} * \begin{bmatrix} x_2 \\y_2 \\z_2 \end{bmatrix} \qquad⎣⎡0z1−y1−z10x1y1−x10⎦⎤∗⎣⎡x2y2z2⎦⎤
(0.1)The formula of line velocity (Basic Principle)
dre⃗dt=we⃗×re⃗\frac{d\vec{r_e}}{dt}=\vec{w_e}×\vec{r_e}dtdre=we×re
- Comment: 在eee坐标系下对向量re⃗\vec{r_e}re求导,得到的是向量re⃗\vec{r_e}re端点的线速度,该公式既是某一向量的线速度等于角速度叉乘该向量,可见角速度方向是右手系中旋转轴的方向,角速度叉乘向量得到的方向又恰好是向量端点的运动方向
- Example: we⃗=(−sin(t),cos(t),0)T\vec{w_e}=(-sin(t),cos(t),0)^Twe=(−sin(t),cos(t),0)T
(0.2)The perspective point Multiply
-
jargon: 左乘行变换右乘列变换
-
new perspective:
[x11x12x13x21x22x23x31x32x33]∗[abc]=a∗[x11x21x31]+b∗[x12x22x32]+c∗[x13x23x33]\begin{bmatrix} x_{11}&x_{12}&x_{13} \\x_{21}&x_{22}&x_{23} \\x_{31}&x_{32}&x_{33} \end{bmatrix}* \begin{bmatrix} a \\b \\c \end{bmatrix}=a* \begin{bmatrix} x_{11} \\x_{21} \\x_{31} \end{bmatrix}+b* \begin{bmatrix} x_{12} \\x_{22} \\x_{32} \end{bmatrix}+c* \begin{bmatrix} x_{13} \\x_{23} \\x_{33} \end{bmatrix}⎣⎡x11x21x31x12x22x32x13x23x33⎦⎤∗⎣⎡abc⎦⎤=a∗⎣⎡x11x21x31⎦⎤+b∗⎣⎡x12x22x32⎦⎤+c∗⎣⎡x13x23x33⎦⎤
-
comment: 相当于向量[abc]\begin{bmatrix} a \\b \\c \end{bmatrix}⎣⎡abc⎦⎤右乘矩阵[x11x12x13x21x22x23x31x32x33]\begin{bmatrix} x_{11}&x_{12}&x_{13} \\x_{21}&x_{22}&x_{23} \\x_{31}&x_{32}&x_{33} \end{bmatrix}⎣⎡x11x21x31x12x22x32x13x23x33⎦⎤,所以看起来是列变换,我们可以把矩阵的三列看作三个基,对于旋转矩阵,由于其正交性质,且叉乘保留原始方向,矩阵的三列可以看作三个正交基,所以上面的矩阵乘以一个向量叫做正交基变换;由于三个基是相互垂直的,在对坐标进行基变换时相互不干扰,所以我们可以把三个基分别拿出来当作三组独立的向量,对接下来的求导可以更方便理解
(0.3)One principle of cross mutiply
(Ra⃗)×(Rb⃗)=R(a⃗×b⃗)(R\vec{a})×(R\vec{b})=R(\vec{a}×\vec{b})(Ra)×(Rb)=R(a×b)
- comment:叉乘的性质有叉乘得出向量的大小∣∣a×b∣∣=∣∣a∣∣∗∣∣b∣∣∗sinθ||a×b||=||a||*||b||*sin\theta∣∣a×b∣∣=∣∣a∣∣∗∣∣b∣∣∗sinθ与方向符合右手坐标系可以证明此性质
(1)Topic
- notation define:
| symbol | describe |
|---|---|
| eee | 大地坐标系 |
| en⃗\vec{e_n}en | 大地坐标系的坐标轴(nnn可为x,y,zx,y,zx,y,z) |
| RbeR_b^eRbe | 从坐标系bbb到坐标系eee的旋转变换 |
| bneb_n^ebne | 在eee坐标系下观察到bbb坐标系的nnn轴方向的单位向量(nnn可为x,y,zx,y,zx,y,z) |
| we⃗\vec{w_e}we | 在eee坐标系下观察到绕旋转轴旋转的角速度 |
| wb⃗\vec{w_b}wb | 在bbb坐标系下观察到绕旋转轴旋转的角速度 |
- start:
dRbedt=d[bxe bye bze]dt=[we⃗×bxe we⃗×bye we⃗×bze]\frac{dR_b^e}{dt}=\frac{d[b_x^e \space\space b_y^e \space\space b_z^e]}{dt}= [\vec{w_e}×b_x^e \space\space \vec{w_e}×b_y^e \space\space \vec{w_e}×b_z^e]dtdRbe=dtd[bxe bye bze]=[we×bxe we×bye we×bze]
=
[Rbewb⃗×bxe Rbewb⃗×bye Rbewb⃗×bze][R_b^e\vec{w_b}×b_x^e \space\space R_b^e\vec{w_b}×b_y^e \space\space R_b^e\vec{w_b}×b_z^e][Rbewb×bxe Rbewb×bye Rbewb×bze]
=
[Rbewb⃗×(Rbeex⃗) Rbewb⃗×(Rbeey⃗) Rbewb⃗×(Rbeez⃗)][R_b^e\vec{w_b}×(R_b^e\vec{e_x}) \space\space R_b^e\vec{w_b}×(R_b^e\vec{e_y}) \space\space R_b^e\vec{w_b}×(R_b^e\vec{e_z}) ][Rbewb×(Rbeex) Rbewb×(Rbeey) Rbewb×(Rbeez)]
=
Rbe[wb⃗×ex⃗ wb⃗×ey⃗ wb⃗×ez⃗]R_b^e[\vec{w_b}×\vec{e_x} \space \space \vec{w_b}×\vec{e_y} \space \space \vec{w_b}×\vec{e_z} ]Rbe[wb×ex wb×ey wb×ez]
=
Rbe[wb⃗]×eR_b^e[\vec{w_b}]^×eRbe[wb]×e
=
Rbe[wb⃗]×R_b^e[\vec{w_b}]^×Rbe[wb]×
get the answer:
Rbe[wb⃗]×R_b^e[\vec{w_b}]^×Rbe[wb]× - perspective: 本问题求解了在大地坐标系中观察某个坐标系旋转的角速度,而在某个坐标系中观察大地坐标系的结果是Rbe−1[we⃗]×R_b^{e-1}[\vec{w_e}]^×Rbe−1[we]×
(2)Reference
https://blog.youkuaiyun.com/weixin_44382195/article/details/110677858
https://blog.youkuaiyun.com/weixin_38632538/article/details/106085426

本文解释了如何在大地坐标系中,通过旋转变换和角速度的叉乘,计算观察到的另一坐标系的角速度。关键步骤涉及反对称矩阵和向量的左乘,揭示了正交基变换原理。
3001

被折叠的 条评论
为什么被折叠?



