POJ 3277 City Horizon 矩形切割

本文介绍了一种通过矩形切割的方法来解决矩形面积并的问题,即计算多个矩形在平面上叠加后的总面积。该问题常见于算法竞赛中,解决思路清晰且附带AC代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

City Horizon
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 18556 Accepted: 5115

Description

Farmer John has taken his cows on a trip to the city! As the sun sets, the cows gaze at the city horizon and observe the beautiful silhouettes formed by the rectangular buildings.

The entire horizon is represented by a number line with N (1 ≤ N ≤ 40,000) buildings. Building i's silhouette has a base that spans locations Ai through Bi along the horizon (1 ≤ Ai < Bi ≤ 1,000,000,000) and has height Hi (1 ≤ Hi ≤ 1,000,000,000). Determine the area, in square units, of the aggregate silhouette formed by all N buildings.

Input

Line 1: A single integer: N
Lines 2..N+1: Input line i+1 describes building i with three space-separated integers: Ai, Bi, and Hi

Output

Line 1: The total area, in square units, of the silhouettes formed by all N buildings

Sample Input

4
2 5 1
9 10 4
6 8 2
4 6 3

Sample Output

16

Hint

The first building overlaps with the fourth building for an area of 1 square unit, so the total area is just 3*1 + 1*4 + 2*2 + 2*3 - 1 = 16.

【题意】就是矩形面积并。

【解题方法】矩形切割。

【AC 代码】

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
const int maxn = 40005;
struct node{
    LL x1,y1;
    LL x2,y2;
    LL sum;
//    void read()
//    {
//        scanf("%I64d%I64d%I64d%I64d",&x1,&y1,&x2,&y2);
//        sum=0LL;
//    }
}T[maxn];
LL n;
bool cmp(node aa,node bb)
{
    if(aa.y2!=bb.y2) return aa.y2<bb.y2;
    else{
        if(aa.x2!=bb.x2) return aa.x2<bb.x2;
        else             return aa.x1>bb.x1;
    }
}
void Cover(LL x1,LL y1,LL x2,LL y2,LL k,LL c)
{
    while(k<n&&(x1>=T[k].x2||x2<=T[k].x1||y1>=T[k].y2||y2<=T[k].y1)) k++;
    if(k>=n){
        T[c].sum+=(x2-x1)*(y2-y1);
        return ;
    }
    if(x1<T[k].x1){
        Cover(x1,y1,T[k].x1,y2,k+1,c);
        x1=T[k].x1;
    }
    if(x2>T[k].x2){
        Cover(T[k].x2,y1,x2,y2,k+1,c);
        x2=T[k].x2;
    }
    if(y1<T[k].y1){
        Cover(x1,y1,x2,T[k].y1,k+1,c);
        y1=T[k].y1;
    }
    if(y2>T[k].y2){
        Cover(x1,T[k].y2,x2,y2,k+1,c);
        y2=T[k].y2;
    }
}
int main()
{
    LL a,b,c;
    while(scanf("%I64d",&n)!=EOF)
    {
        for(int i=0; i<n; i++){
            scanf("%I64d%I64d%I64d",&a,&b,&c);
            T[i].x1=a,T[i].y1=0LL;
            T[i].x2=b,T[i].y2=c;
            T[i].sum=0;
        }
        sort(T,T+n,cmp);
        //
        //system("pause");
        for(LL i=n-1; i>=0; i--){
            Cover(T[i].x1,T[i].y1,T[i].x2,T[i].y2,i+1,i);
        }
        LL ans=0;
        for(int i=0; i<n; i++){
            ans+=T[i].sum;
        }
        printf("%I64d\n",ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值