| Time Limit: 433MS | Memory Limit: 1572864KB | 64bit IO Format: %lld & %llu |
Description
You are given a tree (an undirected acyclic connected graph) with N nodes, and edges numbered 1, 2, 3...N-1. Each edge has an integer value assigned to it, representing its length.
We will ask you to perfrom some instructions of the following form:
- DIST a b : ask for the distance between node a and node b
or - KTH a b k : ask for the k-th node on the path from node a to node b
Example:
N = 6
1 2 1 // edge connects node 1 and node 2 has cost 1
2 4 1
2 5 2
1 3 1
3 6 2
Path from node 4 to node 6 is 4 -> 2 -> 1 -> 3 -> 6
DIST 4 6 : answer is 5 (1 + 1 + 1 + 2 = 5)
KTH 4 6 4 : answer is 3 (the 4-th node on the path from node 4 to node 6 is 3)
Input
The first line of input contains an integer t, the number of test cases (t <= 25). t test cases follow.
For each test case:
- In the first line there is an integer N (N <= 10000)
- In the next N-1 lines, the i-th line describes the i-th edge: a line with three integers a b c denotes an edge between a, b of cost c (c <= 100000)
- The next lines contain instructions "DIST a b" or "KTH a b k"
- The end of each test case is signified by the string "DONE".
There is one blank line between successive tests.
Output
For each "DIST" or "KTH" operation, write one integer representing its result.
Print one blank line after each test.
Example
Input: 1 6 1 2 1 2 4 1 2 5 2 1 3 1 3 6 2 DIST 4 6 KTH 4 6 4 DONE Output: 5 3
【题意】
给了一颗n-1条边的树,有两种询问1:u,v的距离。2:u,v之间的第k个点。前面求一下lca就可以了,后面直接倍增搞一下就好啦。
【AC 代码】
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn=10010;
const int maxm=15;
int n;
int dp[maxn],dep[maxn],p[maxm][maxn];
struct edge{
int v,w,next;
edge(){}
}E[maxn*2];
int head[maxn],tot;
void init()
{
memset(head,-1,sizeof(head));
tot=0;
}
void addedge(int u,int v,int w)
{
E[tot].v=v,E[tot].w=w,E[tot].next=head[u],head[u]=tot++;
}
void dfs(int u,int f,int d)
{
dep[u]=d;
p[0][u]=f;
for(int i=head[u]; ~i; i=E[i].next)
{
int v=E[i].v;
if(v==f) continue;
dp[v]=dp[u]+E[i].w;
dfs(v,u,d+1);
}
}
void build()
{
dfs(1,-1,0);
for(int i=0; i+1<maxm; i++)
{
for(int v=1; v<=n; v++)
{
if(p[i][v]<0) p[i+1][v]=-1;
else p[i+1][v]=p[i][p[i][v]];
}
}
}
int lca(int u,int v)
{
if(dep[u]>dep[v]) swap(u,v);
for(int i=0; i<maxm; i++)
{
if((dep[v]-dep[u])>>i&1)
v=p[i][v];
}
if(u==v) return u;
for(int i=maxm-1; ~i; --i)
{
if(p[i][u]!=p[i][v])
{
u=p[i][u];
v=p[i][v];
}
}
return p[0][u];
}
int get(int u,int k)
{
for(int i=0; i<maxm; i++)
if(k>>i&1) u=p[i][u],k^=(1<<i);
return u;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
init();
int u,v,w;
for(int i=1; i<n; i++)
{
scanf("%d%d%d",&u,&v,&w);
addedge(u,v,w);
addedge(v,u,w);
}
build();
char op[10];
while(1)
{
scanf("%s",op);
if(op[1]=='O') break;
scanf("%d%d",&u,&v);
if(op[1]=='I')
{
int _lca=lca(u,v);
printf("%d\n",dp[u]+dp[v]-2*dp[_lca]);
}
else
{
int k;
scanf("%d",&k);
k--;
int _lca=lca(u,v);
int l=dep[u]-dep[_lca];
int d=dep[u]+dep[v]-2*dep[_lca];
if(k==0) printf("%d\n",u);
else if(k==l) printf("%d\n",_lca);
else if(k<l) printf("%d\n",get(u,k));
else if(k==d) printf("%d\n",v);
else{
k=d-k;
printf("%d\n",get(v,k));
}
}
}
}
return 0;
}
本文介绍了一种树形数据结构上的查询问题,包括节点间距离查询与路径上特定节点查询。通过预处理实现快速响应,涉及LCA算法及倍增技巧。
4348

被折叠的 条评论
为什么被折叠?



