UVA 103 (Stacking Boxes)

本文探讨了在多个维度上解决图形嵌套问题的方法,包括如何判断两个多维图形是否可以相互嵌套,并通过记忆化搜索算法寻找最长的连续嵌套序列。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【题目】

Description

Download as PDF

Background

Some concepts in Mathematics and Computer Science are simple in one or two dimensions but become more complex when extended to arbitrary dimensions. Consider solving differential equations in several dimensions and analyzing the topology of an n-dimensional hypercube. The former is much more complicated than its one dimensional relative while the latter bears a remarkable resemblance to its ``lower-class'' cousin.

The Problem

Consider an n-dimensional ``box'' given by its dimensions. In two dimensions the box (2,3) might represent a box with length 2 units and width 3 units. In three dimensions the box (4,8,9) can represent a box tex2html_wrap_inline40 (length, width, and height). In 6 dimensions it is, perhaps, unclear what the box (4,5,6,7,8,9) represents; but we can analyze properties of the box such as the sum of its dimensions.

In this problem you will analyze a property of a group of n-dimensional boxes. You are to determine the longest nesting string of boxes, that is a sequence of boxes tex2html_wrap_inline44 such that each box tex2html_wrap_inline46 nests in box tex2html_wrap_inline48 ( tex2html_wrap_inline50 .

A box D = ( tex2html_wrap_inline52 ) nests in a box E = ( tex2html_wrap_inline54 ) if there is some rearrangement of the tex2html_wrap_inline56 such that when rearranged each dimension is less than the corresponding dimension in box E. This loosely corresponds to turning box D to see if it will fit in box E. However, since any rearrangement suffices, box D can be contorted, not just turned (see examples below).

For example, the box D = (2,6) nests in the box E = (7,3) since D can be rearranged as (6,2) so that each dimension is less than the corresponding dimension in E. The box D = (9,5,7,3) does NOT nest in the box E = (2,10,6,8) since no rearrangement of D results in a box that satisfies the nesting property, but F = (9,5,7,1) does nest in box E since F can be rearranged as (1,9,5,7) which nests in E.

Formally, we define nesting as follows: box D = ( tex2html_wrap_inline52 ) nests in box E = ( tex2html_wrap_inline54 ) if there is a permutation tex2html_wrap_inline62 of tex2html_wrap_inline64 such that ( tex2html_wrap_inline66 ) ``fits'' in ( tex2html_wrap_inline54 ) i.e., if tex2html_wrap_inline70 for all tex2html_wrap_inline72 .

The Input

The input consists of a series of box sequences. Each box sequence begins with a line consisting of the the number of boxes k in the sequence followed by the dimensionality of the boxes, n (on the same line.)

This line is followed by k lines, one line per box with the n measurements of each box on one line separated by one or more spaces. The tex2html_wrap_inline82 line in the sequence ( tex2html_wrap_inline84 ) gives the measurements for the tex2html_wrap_inline82 box.

There may be several box sequences in the input file. Your program should process all of them and determine, for each sequence, which of the k boxes determine the longest nesting string and the length of that nesting string (the number of boxes in the string).

In this problem the maximum dimensionality is 10 and the minimum dimensionality is 1. The maximum number of boxes in a sequence is 30.

The Output

For each box sequence in the input file, output the length of the longest nesting string on one line followed on the next line by a list of the boxes that comprise this string in order. The ``smallest'' or ``innermost'' box of the nesting string should be listed first, the next box (if there is one) should be listed second, etc.

The boxes should be numbered according to the order in which they appeared in the input file (first box is box 1, etc.).

If there is more than one longest nesting string then any one of them can be output.

Sample Input

5 2
3 7
8 10
5 2
9 11
21 18
8 6
5 2 20 1 30 10
23 15 7 9 11 3
40 50 34 24 14 4
9 10 11 12 13 14
31 4 18 8 27 17
44 32 13 19 41 19
1 2 3 4 5 6
80 37 47 18 21 9

Sample Output

5
3 1 2 4 5
4
7 2 5 6

【题意】

给n维图形,它们的边长是{d1,d2,d3...dn},  对于两个n维图形,如果满足其中一个的所有边长按照任意顺序都一一对应小于另一个的边长,那么就锁可以嵌套到另一个。 例如a{1,2}, b{2,3},  a所有边长都已一一对应小于b的边长,所以a能嵌套于b。

给k个n维图形,求它们最多可以连续嵌套多少个。

【解题思路】记忆化搜索or最长上升子序列!!!

首先要判断两个图形是否可以嵌套,只需要把所有图形边长都按照从小到达排好序,那么对于a,b两个,只要按顺序一一比较它们的边数,如果满足所有ai<bi,就所以a能嵌套于b。

然后,就是解法,这题有两种解法。


第一种就是所谓的用记忆化搜索求DAG模型(详见《算法入门经典》p161).

我们可以用图的邻接矩阵来表示所有的关系,a“可嵌套于”b,那么就是G[a][b]=1。然后这个问题就可以转化成求这张图的一个最长路径长度是多少。


第二种方法,假设a可嵌套于b用a<b来表示,那么最长的一串就是a<b<c<d<e..., 可以看出非常像是一个“最长递增子序列”, 这里的“递增”是指“维度”递增。

【AC代码,记忆化搜索版本,最长上升子序列和这个差不太多】

/****记忆化搜索****/
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
using namespace std;

int G[32][32],arr[32][12];
int dis[32],n,k;
bool fuck;
//judge arr[a] and arr[b] small or big.
inline bool judge(int a,int b)
{
    for(int i=0; i<k; i++)
    {
        if(arr[a][i]<=arr[b][i])return false;
    }
    return true;
}
int dfs(int i)
{
    if(dis[i]!=-1)return dis[i];
    int &ans=dis[i]=1;
    for(int j=0; j<n; j++)
    {
        if(G[i][j])
        {
            ans= max(ans,dfs(j)+1);
        }
    }
    return ans;
}
void Print_Path(int pos)
{
    if(fuck)printf(" %d",pos+1);
    else
    {
        printf("%d",pos+1);
        fuck=true;
    }
    for(int j=0; j<n; j++)
    {
        if(G[pos][j]&&dis[j]+1==dis[pos])
        {
            Print_Path(j);
            break;
        }
    }
}
int main()
{
    while(~scanf("%d%d",&n,&k))
    {
        for(int i=0; i<n; i++)
        {
            for(int j=0; j<k; j++)
            {
                scanf("%d",&arr[i][j]);
            }
            sort(arr[i],arr[i]+k);
        }
        memset(G,0,sizeof(G));
        for(int i=0; i<n-1; i++)
        {
            for(int j=i+1; j<n; j++)
            {
                if(judge(i,j))        G[j][i]=1;
                else if(judge(j,i))   G[i][j]=1;
            }
        }
        memset(dis,-1,sizeof(dis));
        int ans=-1,pos;
        for(int i=0; i<n; i++)
        {
            int t=dfs(i);
            if(t>ans)
            {
                ans=t;
                pos=i;
            }
        }
        printf("%d\n",ans);
        fuck=false;
        Print_Path(pos);
        printf("\n");
    }
    return 0;
}





内容概要:本文档详细介绍了Analog Devices公司生产的AD8436真均方根-直流(RMS-to-DC)转换器的技术细节及其应用场景。AD8436由三个独立模块构成:轨到轨FET输入放大器、高动态范围均方根计算内核和精密轨到轨输出放大器。该器件不仅体积小巧、功耗低,而且具有广泛的输入电压范围和快速响应特性。文档涵盖了AD8436的工作原理、配置选项、外部组件选择(如电容)、增益调节、单电源供电、电流互感器配置、接地故障检测、三相电源监测等方面的内容。此外,还特别强调了PCB设计注意事项和误差源分析,旨在帮助工程师更好地理解和应用这款高性能的RMS-DC转换器。 适合人群:从事模拟电路设计的专业工程师和技术人员,尤其是那些需要精确测量交流电信号均方根值的应用开发者。 使用场景及目标:①用于工业自动化、医疗设备、电力监控等领域,实现对交流电压或电流的精准测量;②适用于手持式数字万用表及其他便携式仪器仪表,提供高效的单电源解决方案;③在电流互感器配置中,用于检测微小的电流变化,保障电气安全;④应用于三相电力系统监控,优化建立时间和转换精度。 其他说明:为了确保最佳性能,文档推荐使用高质量的电容器件,并给出了详细的PCB布局指导。同时提醒用户关注电介质吸收和泄漏电流等因素对测量准确性的影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值